EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Lattice Boltzmann Method for Simulating Turbulent Flows

Download or read book Lattice Boltzmann Method for Simulating Turbulent Flows written by Yusuke Koda and published by . This book was released on 2013 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: The lattice Boltzmann method (LBM) is a relatively new method for fluid flow simulations, and is recently gaining popularity due to its simple algorithm and parallel scalability. Although the method has been successfully applied to a wide range of flow physics, its capabilities in simulating turbulent flow is still under-validated. Hence, in this project, a 3D LBM program was developed to investigate the validity of the LBM for turbulent flow simulations through large eddy simulations (LES).

Book Validation of the Lattice Boltzmann Method for Direct Numerical Simulation of Wall bounded Turbulent Flows

Download or read book Validation of the Lattice Boltzmann Method for Direct Numerical Simulation of Wall bounded Turbulent Flows written by Dustin John Bespalko and published by . This book was released on 2011 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work, the lattice Boltzmann method (LBM) was validated for direct numerical simulation (DNS) of wall-bounded turbulent flows. The LBM is a discrete-particle-based method that numerically solves the Boltzmann equation as opposed to conventional DNS methods that are based on the Navier-Stokes (NS) equations. The advantages of the LBM are its simple implementation, its ability to handle complex geometries, and its scalability on modern high-performance computers. An LBM code was developed and used to simulate fully-developed turbulent channel flow. In order to validate the results, the turbulence statistics were compared to those calculated from a conventional NS-based finite difference (FD) simulation. In the present study, special care was taken to make sure the computational domains for LBM and FD simulations were the same. Similar validation studies in the literature have used LBM simulations with smaller computational domains in order to reduce the computational cost. However, reducing the size of the computational domain affects the turbulence statistics and confounds the results of the validation. The turbulence statistics calculated from the LBM and FD simulations were found to agree qualitatively; however, there were several significant deviations, particularly in the variance profiles. The largest discrepancy was in the variance of the pressure fluctuations, which differed by approximately 7%. Given that both the LBM and FD simulations resolved the full range of turbulent scales and no models were used, this error was deemed to be significant. The cause of the discrepancy in the pressure variance was found to be the compressibility of the LBM. The LBM allows the density to vary, while the FD method does not since it solves the incompressible form of the NS equations. The effect of the compressibility could be reduced by lowering the Mach number, but this would come at the cost of significantly increasing the computational cost. Therefore, the conclusion of this work is that, while the LBM is capable of producing accurate solutions for incompressible turbulent flows, it is significantly more expensive than conventional methods for simple wall-bounded turbulent flows.

Book Lattice Boltzmann Method And Its Application In Engineering

Download or read book Lattice Boltzmann Method And Its Application In Engineering written by Zhaoli Guo and published by World Scientific. This book was released on 2013-03-25 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lattice Boltzmann method (LBM) is a relatively new simulation technique for the modeling of complex fluid systems and has attracted interest from researchers in computational physics. Unlike the traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh.This book will cover the fundamental and practical application of LBM. The first part of the book consists of three chapters starting form the theory of LBM, basic models, initial and boundary conditions, theoretical analysis, to improved models. The second part of the book consists of six chapters, address applications of LBM in various aspects of computational fluid dynamic engineering, covering areas, such as thermo-hydrodynamics, compressible flows, multicomponent/multiphase flows, microscale flows, flows in porous media, turbulent flows, and suspensions.With these coverage LBM, the book intended to promote its applications, instead of the traditional computational fluid dynamic method.

Book Applications of the Lattice Boltzmann Method to Complex and Turbulent Flows

Download or read book Applications of the Lattice Boltzmann Method to Complex and Turbulent Flows written by Li-Shi Luo and published by . This book was released on 2002 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Applications of the Lattice Boltzmann Method to Complex and Turbulent Flows

Download or read book Applications of the Lattice Boltzmann Method to Complex and Turbulent Flows written by National Aeronautics and Space Adm Nasa and published by Independently Published. This book was released on 2018-09-27 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt: We briefly review the method of the lattice Boltzmann equation (LBE). We show the three-dimensional LBE simulation results for a non-spherical particle in Couette flow and 16 particles in sedimentation in fluid. We compare the LBE simulation of the three-dimensional homogeneous isotropic turbulence flow in a periodic cubic box of the size 1283 with the pseudo-spectral simulation, and find that the two results agree well with each other but the LBE method is more dissipative than the pseudo-spectral method in small scales, as expected. Luo, Li-Shi and Qi, Dewei and Wang, Lian-Ping and Bushnell, Dennis M. (Technical Monitor) Langley Research Center NASA/CR-2002-211659, NAS 1.26:211659, ICASE-2002-19

Book Multiple relaxation time Lattice Boltzmann Simulations of Turbulent Pipe Flows

Download or read book Multiple relaxation time Lattice Boltzmann Simulations of Turbulent Pipe Flows written by Harish Opadrishta and published by . This book was released on 2016 with total page 65 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent pipe flows are encountered in a multitude of engineering applications. Some of the examples include removal of moisture, odors, and other harmful gases using exhaust pipes; transporting crude oil and cooling water in oil reneries; circulation of coolants through the engine in automobiles and motorcycles; etc. They have been studied experimentally for more than a century and by direct numerical simulations (DNS) for more than two decades. Over the past twenty years, there has been an increase in the involvement of computation in studying turbulent flows, including turbulent pipe flows. The low cost and time consumption of computer simulations, along with the ability to study complex dynamic processes that are practically intractable at all scales, have resulted in the increase in their use in research. At the same time, the presence of curved boundary remains a challenge for accurate DNS of this simple flow. ☐ In the recent past, lattice Boltzmann method (LBM) has emerged as an attractive option for simulating wall-bounded turbulent flows. It offers several advantages compared to the conventional models of computational fluid dynamics, due to the local nature of operations involved and easy implementation of boundary conditions. Despite the advantages posed by the LBM, no DNS of turbulent pipe flow has been reported using LBM. Hence, the objective of this study is to develop a lattice Boltzmann model to simulate turbulent pipe flow and implement it into a computer code using FORTRAN and MPI. This code is then used to simulate fully developed turbulent pipe flow and validate the results with the existing benchmark data. ☐ In this thesis, the lattice Boltzmann model in three spatial dimensions using 27 mesoscopic velocities on a cubic grid was designed using an "inverse design" analysis. Yu et al.'s double interpolation scheme was used to satisfy the no-slip condition at the solid-liquid interface. ☐ The code was first validated by simulating laminar channel and pipe flows. The profiles of streamwise velocity for the laminar pipe and channel flow simulations were observed to be in excellent agreement with the analytical results. Further, the results of the time evolution of the centerline streamwise velocity for the laminar pipe and channel flow also matched the analytical results. Hence, the validity and accuracy of the code was established. ☐ Turbulent pipe flow was then simulated using the D3Q27 model. The first and second order statistics of the turbulent pipe flow simulation from the D3Q27, D3Q19 model were compared with the reference data being obtained from the spectral and finite volume discretizations of the Navier-Stokes equation. The mean velocity profiles of the D3Q27 simulation matched well with the reference data. On the other hand, the D3Q19 model under-predicts the mean velocity, especially near the center. In addition, the contours of the streamwise velocity for the D3Q19 simulation showed a certain preference along particular directions. This was not observed in the D3Q27 simulation. The erroneous results of the D3Q19 model could be explained by the hypothesis stated in White et al., stating that the presence of "defective planes" could be a plausible reason for the errors in the measurement of streamwise velocity in the D3Q19 model. Hence, the D3Q27 model seems like a suitable option to simulate wall-bounded turbulent flows with a curved boundary. The only drawback to using the D3Q27 model is its slower execution speed as it takes 21% more CPU time than the D3Q19 model.

Book The Lattice Boltzmann Method

Download or read book The Lattice Boltzmann Method written by Timm Krüger and published by Springer. This book was released on 2016-11-07 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a variety of hardware platforms, including multi-core processors, clusters, and graphics processing units. Students and scientists learning and using the LB method will appreciate the wealth of clearly presented and structured information in this volume.

Book Lattice Gas Cellular Automata and Lattice Boltzmann Models

Download or read book Lattice Gas Cellular Automata and Lattice Boltzmann Models written by Dieter A. Wolf-Gladrow and published by Springer. This book was released on 2004-10-19 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.

Book Lattice Boltzmann Modeling

    Book Details:
  • Author : Michael C. Sukop
  • Publisher : Springer Science & Business Media
  • Release : 2007-04-05
  • ISBN : 3540279822
  • Pages : 178 pages

Download or read book Lattice Boltzmann Modeling written by Michael C. Sukop and published by Springer Science & Business Media. This book was released on 2007-04-05 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is a basic introduction to Lattice Boltzmann models that emphasizes intuition and simplistic conceptualization of processes, while avoiding the complex mathematics that underlies LB models. The model is viewed from a particle perspective where collisions, streaming, and particle-particle/particle-surface interactions constitute the entire conceptual framework. Beginners and those whose interest is in model application over detailed mathematics will find this a powerful 'quick start' guide. Example simulations, exercises, and computer codes are included.

Book Lattice Boltzmann Methods for Shallow Water Flows

Download or read book Lattice Boltzmann Methods for Shallow Water Flows written by Jian Guo Zhou and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: The lattice Boltzmann method (LBM) is a modern numerical technique, very efficient, flexible to simulate different flows within complex/varying geome tries. It is evolved from the lattice gas automata (LGA) in order to overcome the difficulties with the LGA. The core equation in the LBM turns out to be a special discrete form of the continuum Boltzmann equation, leading it to be self-explanatory in statistical physics. The method describes the micro scopic picture of particles movement in an extremely simplified way, and on the macroscopic level it gives a correct average description of a fluid. The av eraged particle velocities behave in time and space just as the flow velocities in a physical fluid, showing a direct link between discrete microscopic and continuum macroscopic phenomena. In contrast to the traditional computational fluid dynamics (CFD) based on a direct solution of flow equations, the lattice Boltzmann method provides an indirect way for solution of the flow equations. The method is characterized by simple calculation, parallel process and easy implementation of boundary conditions. It is these features that make the lattice Boltzmann method a very promising computational method in different areas. In recent years, it receives extensive attentions and becomes a very potential research area in computational fluid dynamics. However, most published books are limited to the lattice Boltzmann methods for the Navier-Stokes equations. On the other hand, shallow water flows exist in many practical situations such as tidal flows, waves, open channel flows and dam-break flows.

Book A Generalized Wall Function

Download or read book A Generalized Wall Function written by and published by . This book was released on 1999 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Mechanical Science and Technology for the Industrial Revolution 4 0

Download or read book Advanced Mechanical Science and Technology for the Industrial Revolution 4 0 written by Ligang Yao and published by Springer. This book was released on 2017-10-30 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes more than 30 papers from the first FZU-OPU-NTOU Joint Symposium on Advanced Mechanical Science and Technology for the Industrial Revolution 4.0, held at Fuzhou University, China, in December 2016. The symposium was organized by Fuzhou University (FZU), Osaka Prefecture University (OPU) and National Taiwan Ocean University (NTOU). The authors include several professors from universities in China, Japan, and Taiwan as well as four distinguished invited professors from Canada, Korea, Japan, and Taiwan. The book covers all important aspects related to the 4.0 industrial revolution: robotics and mechatronics; sensors, measurements, and instrumentation; mechanical dynamics and controls; mechanical design; vehicle systems and technologies; fluid mechanics; monitoring and diagnosis, prognosis, and health management; advanced signal processing; and big data; all of which are subjects with great potential in the field of mechanical engineering.

Book Analysis and Applications of Lattice Boltzmann Simulations

Download or read book Analysis and Applications of Lattice Boltzmann Simulations written by Valero-Lara, Pedro and published by IGI Global. This book was released on 2018-05-04 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: Programming has become a significant part of connecting theoretical development and scientific application computation. Fluid dynamics provide an important asset in experimentation and theoretical analysis. Analysis and Applications of Lattice Boltzmann Simulations provides emerging research on the efficient and standard implementations of simulation methods on current and upcoming parallel architectures. While highlighting topics such as hardware accelerators, numerical analysis, and sparse geometries, this publication explores the techniques of specific simulators as well as the multiple extensions and various uses. This book is a vital resource for engineers, professionals, researchers, academics, and students seeking current research on computational fluid dynamics, high-performance computing, and numerical and flow simulations.

Book The Lattice Boltzmann Equation

Download or read book The Lattice Boltzmann Equation written by S. Succi and published by Oxford University Press. This book was released on 2001-06-28 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Certain forms of the Boltzmann equation, have emerged, which relinquish most mathematical complexities of the true Boltzmann equation. This text provides a detailed survey of Lattice Boltzmann equation theory and its major applications.

Book Simulation of Wall bounded Turbulent Convective Flows by Finite Volume Lattice Boltzmann Method

Download or read book Simulation of Wall bounded Turbulent Convective Flows by Finite Volume Lattice Boltzmann Method written by Kalyan Shrestha and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lattice Boltzmann Method (LBM) has become a viable alternative to Navier-Stokes Direct Numerical Simulations (DNS) in fluid dynamics research. The key of this success is the accuracy/simplicity and parallelization compliant property of the stream-collision algorithm. One shortcoming however, comes from the limitation to spatially uniform cubic grids. To overcome this, several LBM extension to non-homogeneous grids have been proposed. These techniques have been reviewed in this thesis. Such review suggests that a better refinement technique should fulfill some properties: obey conservation laws and be stable. This suggests a pathway to adopt Finite Volume approaches (FV LBM). A review on such volumetric approach to LBM concludes that although interesting, at present such methods suffer from several drawbacks. In this study, a new FV discretization method for the Lattice Boltzmann equation that combines high accuracy with limited computational cost is presented. In order to assess the performance of the FV method we carry out a systematic comparison, focused on accuracy and computational performances, with the standard streaming (ST) Lattice Boltzmann equation algorithm. In particular we aim at clarifying whether and in which conditions the proposed algorithm, and more generally any FV algorithm, can be taken as the method of choice in fluid-dynamics LB simulations. We report the first successful simulation of high-Rayleigh number convective flow performed by a Lattice Boltzmann FV based algorithm with wall grid refinement.

Book Lattice Boltzmann Method for Turbulent Combustion

Download or read book Lattice Boltzmann Method for Turbulent Combustion written by Sharath S. Girimaji and published by . This book was released on 2001 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last few years, the Lattice Boltzmann methods - Lattice Boltzmann Equation (LBE) and Lattice Gas Automata (LGA) have made significant strides in both theory and application. On the theoretical front, rigorous mathematical proof now exists demonstrating that the LBE method is a special finite difference scheme of the Boltzmann equation that governs all fluid flow %1. (Recall that the Navier-Stokes equation also has its basis in the Boltzmann equation.) It has also been shown that the LBE method can be related to some conventional CFD methods and the proof brings to light the advantages of the LBE method. Detailed numerical studies with the LBE method have demonstrated the physical accuracy and computational tractability for solving complex fluid flow problems. In its current state, the LBE method is fully developed and well-tested for moderate- Reynolds number, isothermal flows. Many complex flow phenomena have already been studied with this approach (see recent reviews 2, 3 and references therein). The LBE method is now an accurate engineering tool for simulating inert turbulence and is at an ideal stage for extension to chemically reacting turbulent flows.