Download or read book Laser Spectroscopy and Laser Imaging written by Helmut H. Telle and published by CRC Press. This book was released on 2018-04-17 with total page 1292 pages. Available in PDF, EPUB and Kindle. Book excerpt: "a very valuable book for graduate students and researchers in the field of Laser Spectroscopy, which I can fully recommend" —Wolfgang Demtröder, Kaiserslautern University of Technology How would it be possible to provide a coherent picture of this field given all the techniques available today? The authors have taken on this daunting task in this impressive, groundbreaking text. Readers will benefit from the broad overview of basic concepts, focusing on practical scientific and real-life applications of laser spectroscopic analysis and imaging. Chapters follow a consistent structure, beginning with a succinct summary of key principles and concepts, followed by an overview of applications, advantages and pitfalls, and finally a brief discussion of seminal advances and current developments. The examples used in this text span physics and chemistry to environmental science, biology, and medicine. Focuses on practical use in the laboratory and real-world applications Covers the basic concepts, common experimental setups Highlights advantages and caveats of the techniques Concludes each chapter with a snapshot of cutting-edge advances This book is appropriate for anyone in the physical sciences, biology, or medicine looking for an introduction to laser spectroscopic and imaging methodologies. Helmut H. Telle is a full professor at the Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain. Ángel González Ureña is head of the Department of Molecular Beams and Lasers, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain.
Download or read book Laser Spectroscopy and Laser Imaging written by Helmut H. Telle and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "Developments in and applications of laser spectroscopy and laser imaging are growing rapidly, specifically now that spectral analytical methodologies are merging with laser imaging techniques. There are now a wide range of established techniques having applications in many fields of chemistry and physics. The range of applications and techniques often makes it difficult for potential new users to come to an educated decision whether a particular technique may be suitable for his particular problem. It is the intention of this book to provide researchers, both in industry and academia, with a concise collection of laser analysis and imaging techniques. Though there are several books in specific areas of laser spectroscopy, there is a lack of a recent single volume publication providing a solid overview of the field as present texts are now dated in this fast moving field. Written by two leaders in the field it will introduce the reader to individual techniques in a tutorial-fashion; providing key examples and including details of the latest techniques. Though not written as a grad text it has potential to be used for a range of grad courses as well"--
Download or read book Introduction to Laser Spectroscopy written by Halina Abramczyk and published by Elsevier. This book was released on 2005-05-06 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Laser Spectroscopy is a well-written, easy-to-read guide to understanding the fundamentals of lasers, experimental methods of modern laser spectroscopy and applications. It provides a solid grounding in the fundamentals of many aspects of laser physics, nonlinear optics, and molecular spectroscopy. In addition, by comprehensively combining theory and experimental techniques it explicates a variety of issues that are essential to understanding broad areas of physical, chemical and biological science. Topics include key laser types - gas, solid state, and semiconductor - as well as the rapidly evolving field of ultrashort laser phenomena for femtochemistry applications. The examples used are well researched and clearly presented. Introduction to Laser Spectroscopy is strongly recommended to newcomers as well as researchers in physics, engineering, chemistry and biology.* A comprehensive course that combines theory and practice* Includes a systematic and comprehensive description for key laser types* Written for students and professionals looking to gain a thorough understanding of modern laser spectroscopy
Download or read book An Introduction to Laser Spectroscopy written by David L. Andrews and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the new edition the editors have preserved the basic concept and structure, with the involvement of some new authors - all recognized experts in laser spectroscopy. Each chapter addresses a different technique, providing a review and analysis of the current status, and reporting some of the latest achievements. With the key formulas and methods detailed in many sections, this text represents a practicable handbook of its subject. It will be a valuable tool both for specialists to keep abreast of developments and for newcomers to the field needing an accessible introduction to specific methods of laser spectroscopy - and also as a resource for primary references.
Download or read book Laser Spectroscopy and Laser Imaging written by Helmut H. Telle and published by CRC Press. This book was released on 2019-12-12 with total page 750 pages. Available in PDF, EPUB and Kindle. Book excerpt: "a very valuable book for graduate students and researchers in the field of Laser Spectroscopy, which I can fully recommend" --Wolfgang Demtröder, Kaiserslautern University of Technology How would it be possible to provide a coherent picture of this field given all the techniques available today? The authors have taken on this daunting task in this impressive, groundbreaking text. Readers will benefit from the broad overview of basic concepts, focusing on practical scientific and real-life applications of laser spectroscopic analysis and imaging. Chapters follow a consistent structure, beginning with a succinct summary of key principles and concepts, followed by an overview of applications, advantages and pitfalls, and finally a brief discussion of seminal advances and current developments. The examples used in this text span physics and chemistry to environmental science, biology, and medicine. Focuses on practical use in the laboratory and real-world applications Covers the basic concepts, common experimental setups Highlights advantages and caveats of the techniques Concludes each chapter with a snapshot of cutting-edge advances This book is appropriate for anyone in the physical sciences, biology, or medicine looking for an introduction to laser spectroscopic and imaging methodologies. Helmut H. Telle is a full professor at the Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain. Ángel González Ureña is head of the Department of Molecular Beams and Lasers, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain.
Download or read book Laser Spectroscopy for Sensing written by Matthieu Baudelet and published by Woodhead Publishing. This book was released on 2019-09-15 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: Laser spectroscopy is a valuable tool for sensing and chemical analysis. Developments in lasers, detectors and mathematical analytical tools have led to improvements in the sensitivity and selectivity of spectroscopic techniques and extended their fields of application. Laser Spectroscopy for Sensing, Second Edition examines these advances and how laser spectroscopy can be used in a diverse range of industrial, medical, and environmental applications. The book provides an overview of laser spectroscopy at three levels: the fundamental aspects to consider when planning use of laser spectroscopy to solve a problem (from the sample properties to the laser properties to the data analysis), the technical aspects of several spectroscopic techniques, and the fields of applications of such techniques. In the new edition, key advancements from the field are captured as well as two new chapters on Raman Spectroscopy and Laser-induced breakdown spectroscopy. Laser Spectroscopy for Sensing provides readers with a broad overview of the techniques and applications of laser spectroscopy for sensing. Presents the fundamentals of laser technology for controlling the spectral and temporal aspects of laser excitation Explores laser spectroscopy techniques, including Raman spectroscopy and laser-induced breakdown spectroscopy Considers spectroscopic analysis of industrial materials and their applications in nuclear research and industry
Download or read book Foundations of Laser Spectroscopy written by Stig Stenholm and published by Courier Corporation. This book was released on 2012-09-20 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: A simple presentation of the theoretical foundations of steady-state laser spectroscopy, this text helps students to apply theory to calculations with a systematic series of examples and exercises. 1984 edition.
Download or read book Optics Light and Lasers written by Dieter Meschede and published by John Wiley & Sons. This book was released on 2017-06-06 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dieses Buch ist genau richtig für Einsteiger in das Fachgebiet. Schwierige Effekte werden direkt und leicht verständlich präsentiert. Diese aktualisierte, erweiterte Auflage bietet neue Kapitel zu neuen Themen wie Plasmonik, Frequenzkämme auf Femto-Ebene und Quantenkaskadenlaser
Download or read book Molecular and Laser Spectroscopy written by V.P. Gupta and published by Elsevier. This book was released on 2020-07-10 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular and Laser Spectroscopy, Advances and Applications: Volume 2 gives students and researchers an up-to-date understanding of the fast-developing area of molecular and laser spectroscopy. This book covers basic principles and advances in several conventional as well as new and upcoming areas of molecular and laser spectroscopy, such as a wide range of applications in medical science, material science, standoff detection, defence and security, chemicals and pharmaceuticals, and environmental science. It covers the latest advancements, both in terms of techniques and applications, and highlights future projections. Editors V.P. Gupta and Yukihiro Ozaki have brought together eminent scientists in different areas of spectroscopy to develop specialized topics in conventional molecular spectroscopy (Cavity ringdown, Matrix Isolation, Intense THz, Far- and Deep- UV, Optogalvanic ), linear and nonlinear laser spectroscopy (Rayleigh & Raman Scattering), Ultrafast Time-resolved spectroscopy, and medical applications of molecular spectroscopy. and advanced material found in research articles. This new volume expands upon the topics covered in the first volume for scientists to learn the latest techniques and put them to practical use in their work. - Covers several areas of spectroscopy research and expands upon topics covered in the first volume - Includes exhaustive lists of research articles, reviews, and books at the end of each chapter to further learning objectives - Uses illustrative examples of the varied applications to provide a practical guide to those interested in using molecular and laser spectroscopy tools in their research
Download or read book Femtosecond Laser Spectroscopy written by Peter Hannaford and published by Springer Science & Business Media. This book was released on 2005-12-27 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: The embryonic development of femtoscience stems from advances made in the generation of ultrashort laser pulses. Beginning with mode-locking of glass lasers in the 1960s, the development of dye lasers brought the pulse width down from picoseconds to femtoseconds. The breakthrough in solid state laser pulse generation provided the current reliable table-top laser systems capable of average power of about 1 watt, and peak power density of easily watts per square centimeter, with pulse widths in the range of four to eight femtoseconds. Pulses with peak power density reaching watts per square centimeter have been achieved in laboratory settings and, more recently, pulses of sub-femtosecond duration have been successfully generated. As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. In molecular science the explosive growth of this research is for fundamental reasons. In femtochemistry and femtobiology chemical bonds form and break on the femtosecond time scale, and on this scale of time we can freeze the transition states at configurations never before seen. Even for n- reactive physical changes one is observing the most elementary of molecular processes. On a time scale shorter than the vibrational and rotational periods the ensemble behaves coherently as a single-molecule trajectory.
Download or read book Laser Chemistry written by Helmut H. Telle and published by John Wiley & Sons. This book was released on 2007-04-30 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Laser Chemistry: Spectroscopy, Dynamics and Applications provides a basic introduction to the subject, written for students and other novices. It assumes little in the way of prior knowledge, and carefully guides the reader through the important theory and concepts whilst introducing key techniques and applications.
Download or read book Laser Imaging and Manipulation in Cell Biology written by Francesco S. Pavone and published by John Wiley & Sons. This book was released on 2011-07-28 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here, the editor has gathered a team of international experts to present the latest advances in the field of laser imaging and manipulation techniques. The result is broad coverage of the interactions with biological samples to perform novel optical manipulation operations, both on the cellular and tissue levels. Of interest to physicists working and researching laser tissue mechanisms, cell biologists investigating new imaging and manipulation operation on the cellular level, medical doctors working with new laser therapies and diagnostic tools, as well as engineers developing new technologies in the field of optics and lasers.
Download or read book Principles of Laser Spectroscopy and Quantum Optics written by Paul R. Berman and published by Princeton University Press. This book was released on 2010-12-13 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principles of Laser Spectroscopy and Quantum Optics is an essential textbook for graduate students studying the interaction of optical fields with atoms. It also serves as an ideal reference text for researchers working in the fields of laser spectroscopy and quantum optics. The book provides a rigorous introduction to the prototypical problems of radiation fields interacting with two- and three-level atomic systems. It examines the interaction of radiation with both atomic vapors and condensed matter systems, the density matrix and the Bloch vector, and applications involving linear absorption and saturation spectroscopy. Other topics include hole burning, dark states, slow light, and coherent transient spectroscopy, as well as atom optics and atom interferometry. In the second half of the text, the authors consider applications in which the radiation field is quantized. Topics include spontaneous decay, optical pumping, sub-Doppler laser cooling, the Heisenberg equations of motion for atomic and field operators, and light scattering by atoms in both weak and strong external fields. The concluding chapter offers methods for creating entangled and spin-squeezed states of matter. Instructors can create a one-semester course based on this book by combining the introductory chapters with a selection of the more advanced material. A solutions manual is available to teachers. Rigorous introduction to the interaction of optical fields with atoms Applications include linear and nonlinear spectroscopy, dark states, and slow light Extensive chapter on atom optics and atom interferometry Conclusion explores entangled and spin-squeezed states of matter Solutions manual (available only to teachers)
Download or read book Ultrasensitive Laser Spectroscopy written by David S. Kliger and published by . This book was released on 1983 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultrasensitive Laser Spectroscopy covers the experimental methods involved in various sensitive techniques to which lasers have been applied for the study of weak transitions. This book is organized into seven chapters. Each chapter discusses the theories, experiments, and application of the specific technique. A discussion on the advantages, disadvantages, and modifications made in each technique is also provided. Ultrasensitive techniques considered in this text include photoacoustic, one- and two-photon excitation, absorption, mass, and laser ionization spectroscopies. Other chapters exami ...
Download or read book Introduction to Nonlinear Laser Spectroscopy written by Marc Levenson and published by Elsevier. This book was released on 2012-12-02 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Nonlinear Laser Spectroscopy focuses on the principles of nonlinear laser spectroscopy. This book discusses the experimental techniques of nonlinear optics and spectroscopy. Comprised of seven chapters, this book starts with an overview of the stimulated Raman effect and coherent anti-Stokes Raman spectroscopy, which can be used in a varied way to generate radiation in the ultraviolet and vacuum-ultraviolet areas. This text then explains the simplest quantum-mechanical system consisting of an isolated entity with energy eigenstates
Download or read book Handbook of Laser Induced Breakdown Spectroscopy written by David A. Cremers and published by John Wiley & Sons. This book was released on 2013-03-15 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from fundamentals and moving through a thorough discussion of equipment, methods, and techniques, the Handbook of Laser-Induced Breakdown Spectroscopy provides a unique reference source that will be of value for many years to come for this important new analysis method. The authors, with a total of over 60 years of experience in the LIBS method, use a combination of tutorial discussions ranging from basic principles up to more advanced descriptions along with extensive figures and photographs to clearly explain topics addressed in the text. In this second edition, chapters on the use of statistical analysis and advances in detection of weapons of mass destruction have been added. Tables of data related to analysis with LIBS have been updated. The Handbook of Laser-Induced Breakdown Spectroscopy, Second Edition: provides a thorough but understandable discussion of the basic principles of the method based on atomic emission spectroscopy, including recently available data leading to better characterization of the LIBS plasma; presents a discussion of the many advantages of the method along with limitations, to provide the reader a balanced overview of capabilities of the method; describes LIBS instrumentation ranging from basic set-ups to more advanced configurations; presents a comprehensive discussion of the different types of components (laser, spectrometers, detectors) that can be used for LIBS apparatuses along with suggestions for their use, as well as an up-to-date treatment of the newest advances and capabilities of LIBS instruments; presents the analytical capabilities of the method in terms of detection limits, accuracy, and precision of measurements for a variety of different sample types; discusses methods of sampling different media such as gases, liquids, and solids; presents an overview of some real-world applications of the method, with new emphasis on sampling of biologically and physically dangerous materials; provides an up-to-date list of references to LIBS literature along with the latest detection limits and a unique list of element detection limits using a uniform analysis method; provides annotated examples of LIBS spectra which can serve as references for the general reader and will be especially useful for those starting out in the field.
Download or read book Laser and Fiber Optic Gas Absorption Spectroscopy written by George Stewart and published by Cambridge University Press. This book was released on 2021-04-08 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: An invaluable text for the teaching, design, and development of gas sensor technology. This excellent resource synthesizes the fundamental principles of spectroscopy, laser physics, and photonics technology and engineering to enable the reader to fully understand the key issues and apply them in the design of optical gas absorption sensors. It provides a straightforward introduction to low-cost and highly versatile near-IR systems, as well as an extensive review of mid-IR systems. Fibre laser systems for spectroscopy are also examined in detail, especially the emerging technique of frequency comb spectroscopy. Featuring many examples of real-world application and performance, as well as MATLAB computer programs for modeling and simulation, this exceptional work is ideal for postgraduate students, researchers, and professional engineers seeking to gain an in-depth understanding of the principles and applications of fibre-optic and laser-based gas sensors.