EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Laser Wakefield Electron Acceleration

Download or read book Laser Wakefield Electron Acceleration written by Karl Schmid and published by Springer Science & Business Media. This book was released on 2011-05-18 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. This process, known as laser wakefield acceleration (LWFA), relies on strongly driven plasma waves for the generation of accelerating gradients in the vicinity of several 100 GV/m, a value four orders of magnitude larger than that attainable by conventional accelerators. This thesis demonstrates that laser pulses with an ultrashort duration of 8 fs and a peak power of 6 TW allow the production of electron energies up to 50 MeV via LWFA. The special properties of laser accelerated electron pulses, namely the ultrashort pulse duration, the high brilliance, and the high charge density, open up new possibilities in many applications of these electron beams.

Book Laser plasma Acceleration   Proceedings of the International School of Physics  Enrico Fermi   Varenna on Lake Como  Villa Monastero  20 25 June 2011

Download or read book Laser plasma Acceleration Proceedings of the International School of Physics Enrico Fermi Varenna on Lake Como Villa Monastero 20 25 June 2011 written by Fernando Ferroni and published by IOS Press. This book was released on 2012 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Impressive progress has been made in the field of laser-plasma acceleration in the last decade, with outstanding achievements from both experimental and theoretical viewpoints. Closely exploiting the development of ultra-intense, ultrashort pulse lasers, laser-plasma acceleration has developed rapidly, achieving accelerating gradients of the order of tens of GeV/m, and making the prospect of miniature accelerators a more realistic possibility.This book presents the lectures delivered at the Enrico Fermi International School of Physics and summer school: 'Laser-Plasma Acceleration', held in Varenna, Italy, in June 2011.

Book High Power Laser Plasma Interaction

Download or read book High Power Laser Plasma Interaction written by C. S. Liu and published by Cambridge University Press. This book was released on 2019-05-23 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of high-power laser-plasma interaction has grown in the last few decades, with applications ranging from laser-driven fusion and laser acceleration of charged particles to laser ablation of materials. This comprehensive text covers fundamental concepts including electromagnetics and electrostatic waves, parameter instabilities, laser driven fusion,charged particle acceleration and gamma rays. Two important techniques of laser proton interactions including target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA) are discussed in detail, along with their applications in the field of medicine. An analytical framework is developed for laser beat-wave and wakefield excitation of plasma waves and subsequent acceleration of electrons. The book covers parametric oscillator model and studies the coupling of laser light with collective modes.

Book Investigation of Staged Laser Plasma Acceleration

Download or read book Investigation of Staged Laser Plasma Acceleration written by Satomi Shiraishi and published by Springer. This book was released on 2014-07-10 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis establishes an exciting new beginning for Laser Plasma Accelerators (LPAs) to further develop toward the next generation of compact high energy accelerators. Design, installation and commissioning of a new experimental setup at LBNL played an important role and are detailed through three critical components: e-beam production, reflection of laser pulses with a plasma mirror and large wake excitation below electron injection threshold. Pulses from a 40 TW peak power laser system were split into a 25 TW pulse and a 15 TW pulse. The first pulse was used for e-beam production in the first module and the second pulse was used for wake excitation in the second module to post-accelerate the e-beam. As a result, reliable e-beam production and efficient wake excitation necessary for the staged acceleration were independently demonstrated. These experiments have laid the foundation for future staging experiments at the 40 TW peak power level.

Book A Superintense Laser Plasma Interaction Theory Primer

Download or read book A Superintense Laser Plasma Interaction Theory Primer written by Andrea Macchi and published by Springer Science & Business Media. This book was released on 2013-01-24 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: The continuous trend towards higher and higher laser intensities has opened the way to new physical regimes and advanced applications of laser-plasma interactions, thus stimulating novel connections with ultrafast optics, astrophysics, particle physics, and biomedical applications. This book is primarily oriented towards students and young researchers who need to acquire rapidly a basic knowledge of this active and rapidly changing research field. To this aim, the presentation is focused on a selection of basic models and inspiring examples, and includes topics which emerged recently such as ion acceleration, "relativistic engineering" and radiation friction. The contents are presented in a self-contained way assuming only a basic knowledge of classical electrodynamics, mechanics and relativistic dynamics at the undergraduate (Bachelor) level, without requiring any previous knowledge of plasma physics. Hence, the book may serve in several ways: as a compact textbook for lecture courses, as a short and accessible introduction for the newcomer, as a quick reference for the experienced researcher, and also as an introduction to some nonlinear mathematical methods through examples of their application to laser-plasma modeling.

Book Frontiers in High Energy Density Physics

Download or read book Frontiers in High Energy Density Physics written by National Research Council and published by National Academies Press. This book was released on 2003-05-11 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.

Book Laser Plasma Interactions

Download or read book Laser Plasma Interactions written by Dino A. Jaroszynski and published by CRC Press. This book was released on 2009-03-27 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Solid Compendium of Advanced Diagnostic and Simulation ToolsExploring the most exciting and topical areas in this field, Laser-Plasma Interactions focuses on the interaction of intense laser radiation with plasma. After discussing the basic theory of the interaction of intense electromagnetic radiation fields with matter, the book covers three ap

Book Applications of Laser Driven Particle Acceleration

Download or read book Applications of Laser Driven Particle Acceleration written by Paul Bolton and published by CRC Press. This book was released on 2018-06-04 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book of its kind to highlight the unique capabilities of laser-driven acceleration and its diverse potential, Applications of Laser-Driven Particle Acceleration presents the basic understanding of acceleration concepts and envisioned prospects for selected applications. As the main focus, this new book explores exciting and diverse application possibilities, with emphasis on those uniquely enabled by the laser driver that can also be meaningful and realistic for potential users. It also emphasises distinction, in the accelerator context, between laser-driven accelerated particle sources and the integrated laser-driven particle accelerator system (all-optical and hybrid versions). A key aim of the book is to inform multiple, interdisciplinary research communities of the new possibilities available and to inspire them to engage with laser-driven acceleration, further motivating and advancing this developing field. Material is presented in a thorough yet accessible manner, making it a valuable reference text for general scientific and engineering researchers who are not necessarily subject matter experts. Applications of Laser-Driven Particle Acceleration is edited by Professors Paul R. Bolton, Katia Parodi, and Jörg Schreiber from the Department of Medical Physics at the Ludwig-Maximilians-Universität München in München, Germany. Features: Reviews the current understanding and state-of-the-art capabilities of laser-driven particle acceleration and associated energetic photon and neutron generation Presents the intrinsically unique features of laser-driven acceleration and particle bunch yields Edited by internationally renowned researchers, with chapter contributions from global experts

Book Plasma Science

    Book Details:
  • Author : National Academies of Sciences Engineering and Medicine
  • Publisher :
  • Release : 2021-02-28
  • ISBN : 9780309677608
  • Pages : 291 pages

Download or read book Plasma Science written by National Academies of Sciences Engineering and Medicine and published by . This book was released on 2021-02-28 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasma Science and Engineering transforms fundamental scientific research into powerful societal applications, from materials processing and healthcare to forecasting space weather. Plasma Science: Enabling Technology, Sustainability, Security and Exploration discusses the importance of plasma research, identifies important grand challenges for the next decade, and makes recommendations on funding and workforce. This publication will help federal agencies, policymakers, and academic leadership understand the importance of plasma research and make informed decisions about plasma science funding, workforce, and research directions.

Book Challenges and Goals for Accelerators in the XXI Century

Download or read book Challenges and Goals for Accelerators in the XXI Century written by Oliver Brning and published by World Scientific. This book was released on 2015 with total page 855 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The past 100 years of accelerator-based research have led the field from first insights into the structure of atoms to the development and confirmation of the Standard Model of physics. Accelerators have been a key tool in developing our understanding of the elementary particles and the forces that govern their interactions. This book describes the past 100 years of accelerator development with a special focus on the technological advancements in the field, the connection of the various accelerator projects to key developments and discoveries in the Standard Model, how accelerator technologies open the door to other applications in medicine and industry, and finally presents an outlook of future accelerator projects for the coming decades."--Provided by publisher.

Book Synchrotron Light Sources and Free Electron Lasers

Download or read book Synchrotron Light Sources and Free Electron Lasers written by Eberhard J. Jaeschke and published by Springer. This book was released on 2016-05-27 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources driven by laser-plasma accelerators. The applications of the most advanced light sources and the advent of nanobeams and fully coherent x-rays allow experiments from which scientists in the past could not even dream. Examples are the diffraction with nanometer resolution, imaging with a full 3D reconstruction of the object from a diffraction pattern, measuring the disorder in liquids with high spatial and temporal resolution. The 20th century was dedicated to the development and improvement of synchrotron light sources with an ever ongoing increase of brilliance. With ultrahigh brilliance sources, the 21st century will be the century of x-ray lasers and their applications. Thus, we are already close to the dream of condensed matter and biophysics: imaging single (macro)molecules and measuring their dynamics on the femtosecond timescale to produce movies with atomic resolution.

Book Theory of Photon Acceleration

Download or read book Theory of Photon Acceleration written by J.T Mendonca and published by CRC Press. This book was released on 2000-12-13 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photo acceleration has dominated the theoretical plasma physics area in recent years and has found application in all subjects where waves in continuous media are studied - plasma physics, astrophysics, and optics. This theory will provide a modern understanding of photon interaction with matter, helping to develop novel accelerators based on laser-plasma interactions, new radiation sources, and even new models for astrophysical objects. Written by a major player in the field, this book describes the general theory of photo acceleration, which allows fluid, kinetic, quantum, and classical electrodynamical approaches to be formulated. It includes examples from plasma physics, cosmology, fiber optics, mathematical physics, particle accelerator physics, and radiation physics.

Book Laser Plasma Interactions and Applications

Download or read book Laser Plasma Interactions and Applications written by Paul McKenna and published by Springer Science & Business Media. This book was released on 2013-03-29 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Laser-Plasma Interactions and Applications covers the fundamental and applied aspects of high power laser-plasma physics. With an internationally renowned team of authors, the book broadens the knowledge of young researchers working in high power laser-plasma science by providing them with a thorough pedagogical grounding in the interaction of laser radiation with matter, laser-plasma accelerators, and inertial confinement fusion. The text is organised such that the theoretical foundations of the subject are discussed first, in Part I. In Part II, topics in the area of high energy density physics are covered. Parts III and IV deal with the applications to inertial confinement fusion and as a driver of particle and radiation sources, respectively. Finally, Part V describes the principle diagnostic, targetry, and computational approaches used in the field. This book is designed to give students a thorough foundation in the fundamental physics of laser-plasma interactions. It will also provide readers with knowledge of the latest research trends and elucidate future exciting challenges in laser-plasma science.

Book Computational Science     ICCS 2002

Download or read book Computational Science ICCS 2002 written by Peter M.A. Sloot and published by Springer Science & Business Media. This book was released on 2002-04-12 with total page 1153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Science is the scienti?c discipline that aims at the development and understanding of new computational methods and techniques to model and simulate complex systems. The area of application includes natural systems – such as biology, envir- mental and geo-sciences, physics, and chemistry – and synthetic systems such as electronics and ?nancial and economic systems. The discipline is a bridge b- ween ‘classical’ computer science – logic, complexity, architecture, algorithms – mathematics, and the use of computers in the aforementioned areas. The relevance for society stems from the numerous challenges that exist in the various science and engineering disciplines, which can be tackled by advances made in this ?eld. For instance new models and methods to study environmental issues like the quality of air, water, and soil, and weather and climate predictions through simulations, as well as the simulation-supported development of cars, airplanes, and medical and transport systems etc. Paraphrasing R. Kenway (R.D. Kenway, Contemporary Physics. 1994): ‘There is an important message to scientists, politicians, and industrialists: in the future science, the best industrial design and manufacture, the greatest medical progress, and the most accurate environmental monitoring and forecasting will be done by countries that most rapidly exploit the full potential ofcomputational science’. Nowadays we have access to high-end computer architectures and a large range of computing environments, mainly as a consequence of the enormous s- mulus from the various international programs on advanced computing, e.g.

Book Computational Plasma Physics

Download or read book Computational Plasma Physics written by Toshi Tajima and published by CRC Press. This book was released on 2018-03-14 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: The physics of plasmas is an extremely rich and complex subject as the variety of topics addressed in this book demonstrates. This richness and complexity demands new and powerful techniques for investigating plasma physics. An outgrowth from his graduate course teaching, now with corrections, Tajima's text provides not only a lucid introduction to computational plasma physics, but also offers the reader many examples of the way numerical modeling, properly handled, can provide valuable physical understanding of the nonlinear aspects so often encountered in both laboratory and astrophysical plasmas. Included here are computational methods for modern nonlinear physics as applied to hydrodynamic turbulence, solitons, fast reconnection of magnetic fields, anomalous transports, dynamics of the sun, and more. The text contains examples of problems now solved using computational techniques including those concerning finite-size particles, spectral techniques, implicit differencing, gyrokinetic approaches, and particle simulation.

Book Unifying Physics of Accelerators  Lasers and Plasma

Download or read book Unifying Physics of Accelerators Lasers and Plasma written by Andrei Seryi and published by CRC Press. This book was released on 2023-04-30 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unifying Physics of Accelerators, Lasers and Plasma introduces the physics of accelerators, lasers and plasma in tandem with the industrial methodology of inventiveness, a technique that teaches that similar problems and solutions appear again and again in seemingly dissimilar disciplines. This unique approach builds bridges and enhances connections between the three aforementioned areas of physics that are essential for developing the next generation of accelerators. A Breakthrough by Design approach, introduced in the book as an amalgam of TRIZ inventive principles and laws of technical system evolution with the art of back-of-the-envelope estimations, via numerous examples and exercises discussed in the solution manual, will make you destined to invent. Unifying Physics of Accelerators, Lasers and Plasma outlines a path from idea to practical implementation of scientific and technological innovation. This second edition has been updated throughout, with new content on superconducting technology, energy recovery, polarization, various topics of advanced technology, etc., making it relevant for the Electron-Ion Collider project, as well as for advanced lights sources, including Free Electron Lasers with energy recovery. The book is suitable for students at the senior undergraduate and graduate levels, as well as for scientists and engineers interested in enhancing their abilities to work successfully on the development of the next generation of facilities, devices and scientific instruments manufactured from the synergy of accelerators, lasers and plasma. Key Features: Introduces the physics of accelerators, lasers, and plasma in tandem with the industrial methodology of inventiveness. Outlines a path from idea to practical implementation of scientific and technological innovation. Contains more than 380 illustrations and numerous end-of-chapter exercises. Solutions manual is included into the book. Boasting more than 380 illustrations, this highly visual text: Employs TRIZ to amalgamate and link different areas of science Avoids heavy mathematics, using back-of-the-envelope calculations to convey key principles Introduces the Innovation by Design approach based an amalgam of TRIZ inventive principles and laws of technical system evolution with the art of back-of-the-envelope estimations – developing and applying this methodology, you will be destined to invent Includes updated materials for all eleven chapters of the first edition, e.g., the FEL invention path analysis, etc. The second edition includes new chapters: Beam Cooling and Final Focusing, Beam Stability and Energy Recovery, Advanced Technologies The new chapters add topics such as superconducting magnets and accelerating cavities, polarized beams, energy recovery – themes relevant for new projects such as Electron-Ion Collider, or Free Electron Laser based on energy recovery for science or industry The second edition also includes a new chapter with illustrations of 40 inventive principles of TRIZ based on the areas of accelerator, laser and plasma technology Every chapter includes invention case studies, often making important connections to adjacent areas of technologies, illustrated by the case of EUV light generation invention for semiconductor lithography, etc. Includes end-of-chapter exercises focusing on physics and on applications of the inventiveness method, on reinventing technical systems and on practicing back-of-the-envelope estimations; and also includes mini-projects, suitable for exercises by teams of students Includes a detailed Guide to solutions of the exercises, discussing the inventions and highlighting the relevant inventive principles, as well as directions of mini-projects Includes discussion of the TRIZ laws of evolution of technical systems and makes bold predictions for the Year 2050 for accelerator, laser and plasma technology Praise for the first edition "...Unifying Physics of Accelerators, Lasers and Plasma is a must-have for every student and practitioner of accelerator science. It is a quick reference guide and provides solid, intuitive discussions of what are often quite erudite concepts. I enthusiastically applaud this outstanding book." Sekazi Mtingwa in Physics Today, August 2016