EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Lane Changing Models for Arterial Traffic

Download or read book Lane Changing Models for Arterial Traffic written by Varun Ramanujam and published by . This book was released on 2007 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: (Cont.) Traffic conditions in the driver's neighborhood that are likely to influence lane change duration are accounted for in the third level. The extended model is applied to data obtained from video observations on traffic on a stretch of an arterial corridor in California. Apart from possessing distinctive features including signalized intersections and multiple access locations that result in lower average speeds, the arterial dataset used in this study represents a relatively low density scenario in terms of gap availability, thereby presenting an ideal test-bed for the proposed model extension. Since arterial datasets have not received predominant attention in literature, this work uncovers some traffic aspects not encountered in past studies. The model is estimated using a sample of the overall dataset available in the form of disaggregate vehicle trajectories. The estimated model is implemented in a microscopic traffic simulator MITSIMLab, and model validation is done using aggregated traffic data. Estimation and validation results showcase the improved modeling capabilities achieved through the proposed extension.

Book Lane Changing Models for Arterial Traffic

Download or read book Lane Changing Models for Arterial Traffic written by Varun Ramanujam and published by . This book was released on 2017-03-02 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Lane changing Model for Urban Arterial Streets

Download or read book A Lane changing Model for Urban Arterial Streets written by Daniel(Jian) Sun and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The lane-changing probability for each DLC scenario was modeled as a function of corresponding important factors (obtained from focus group) and driver types. In gap acceptance modeling, the "hand-shaking negotiation" concept (from the TCP/IP protocols in computer network communications) was introduced to describe the vehicle interactions during lane-changing maneuvers under congested traffic flow. The proposed lane-changing model was developed and implemented in a microscopic traffic simulator, CORSIM. Traffic data were collected along a congested arterial in the City of Gainesville, FL, and used for model calibration and validation purposes. Simulation capabilities of the newly developed model were compared against the original lane-changing model in CORSIM. The results indicate that the new model better replicates the observed traffic under different levels of congestion.

Book Characterization of Arterial Traffic Congestion Through Analysis of Operational Parameters  gap Acceptance and Lane Changing

Download or read book Characterization of Arterial Traffic Congestion Through Analysis of Operational Parameters gap Acceptance and Lane Changing written by Saravanan Gurupackiam and published by . This book was released on 2010 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling Drivers  Acceleration and Lane Changing Behavior

Download or read book Modeling Drivers Acceleration and Lane Changing Behavior written by Kazi Iftekhar Ahmed and published by . This book was released on 1999 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Introduction to Traffic Flow Theory

Download or read book An Introduction to Traffic Flow Theory written by Lily Elefteriadou and published by Springer Nature. This book was released on with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Traffic Flow Theory

Download or read book Traffic Flow Theory written by National Research Council (U.S.). Transportation Research Board and published by . This book was released on 1998 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multi lane Hybrid Traffic Flow Model

Download or read book Multi lane Hybrid Traffic Flow Model written by Jorge Andrés Laval and published by . This book was released on 2004 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt: A multi-lane traffic flow model realistically captures the disruptive effects of lane-changing vehicles by recognizing their limited ability to accelerate. While they accelerate, these vehicles create voids in the traffic stream that affect its character. Bounded acceleration explains two features of freeway traffic streams: the capacity drop of freeway bottlenecks, and the quantitative relation between the discharge rate of moving bottlenecks and bottleneck speed. The model combines a multilane kinematic wave module for the traffic stream, with a detailed constrained-motion model to describe the lane-changing maneuvers, and a behavioral demand model to trigger them. The behavioral demand model has only one parameter. It was held constant in all experiments.

Book Freeway Traffic Modelling and Control

Download or read book Freeway Traffic Modelling and Control written by Antonella Ferrara and published by Springer. This book was released on 2018-04-12 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides an extended overview of modelling and control approaches for freeway traffic systems, moving from the early methods to the most recent scientific results and field implementations. The concepts of green traffic systems and smart mobility are addressed in the book, since a modern freeway traffic management system should be designed to be sustainable. Future perspectives on freeway traffic control are also analysed and discussed with reference to the most recent technological advancements The most widespread modelling and control techniques for freeway traffic systems are treated with mathematical rigour, but also discussed with reference to their performance assessment and to the expected impact of their practical usage in real traffic systems. In order to make the book accessible to readers of different backgrounds, some fundamental aspects of traffic theory as well as some basic control concepts, useful for better understanding the addressed topics, are provided in the book. This monograph can be used as a textbook for courses on transport engineering, traffic management and control. It is also addressed to experts working in traffic monitoring and control areas and to researchers, technicians and practitioners of both transportation and control engineering. The authors’ systematic vision of traffic modelling and control methods developed over decades makes the book a valuable survey resource for freeway traffic managers, freeway stakeholders and transportation public authorities with professional interests in freeway traffic systems. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Book Modeling  Estimation and Control of Traffic

Download or read book Modeling Estimation and Control of Traffic written by Dongyan Su and published by . This book was released on 2014 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation studies a series of freeway and arterial traffic modeling, estimation and control methodologies. First, it investigates the Link-Node Cell Transmission Model's (LN-CTM's) ability to model arterial traffic. The LN-CTM is a modification of the cell transmission model developed by Daganzo. The investigation utilizes traffic data collected on an arterial segment in Los Angeles, California, and a link-node cell transmission model, with some adaptations to the arterial traffic, is constructed for the studied location. The simulated flow and the simulation travel time were compared with field measurements to evaluate the modeling accuracy. Second, an algorithm for estimating turning proportions is proposed in this dissertation. The knowledge about turning proportions at street intersections is a frequent input for traffic models, but it is often difficult to measure directly. Compared with previous estimation methods used to solve this problem, the proposed method can be used with only half the detectors employed in the conventional complete detector configuration. The proposed method formulates the estimation problem as a constrained least squares problem, and a recursive solving procedure is given. A simulation study was carried out to demonstrate the accuracy and efficiency of the proposed algorithm. In addition to addressing arterial traffic modeling and estimation problems, this dissertation also studies a freeway traffic control strategy and a freeway and arterial coordinated control strategy. It presents a coordinated control strategy of variable speed limits (VSL) and ramp metering to address freeway congestion caused by weaving effects. In this strategy, variable speed limits are designed to maximize the bottleneck flow, and ramp metering is designed to minimize travel time in a model predictive control frame work. A microscopic simulation based on the I-80 at Emeryville, California was built to evaluate the strategy, and the results showed that the traffic performance was significantly improved . Following the freeway control study, this dissertation discusses the coordinated control of freeways and arterials. In current practice, traffic controls on freeways and on arterials are independent. In order to coordinate these two systems for better performance, a control strategy covering the freeway ramp metering and the signal control at the adjacent intersection is developed. This control strategy uses upstream ALINEA, which is a well-known control algorithm, for ramp metering to locally maximize freeway throughput. For the intersection signal control, the proposed control strategy distributes green splits by taking into account both the available on-ramp space and the demands of all intersection movements. A microscopic simulation of traffic in an arterial intersection with flow discharge to a freeway on-ramp, which is calibrated using the data collected at San Jose, California, is created to evaluate the performance of the proposed control strategy. The results showed that the proposed strategy can reduce intersection delay by 8%, compared to the current field-implemented control strategy. Transportation mobility can be improved not only by traffic management strategies, but also through the deployment of advanced vehicle technologies. This dissertation also investigates the impact of Adaptive Cruise Control (ACC) and Cooperative Adaptive Cruise Control (CACC) on highway capacity. A freeway microscopic traffic simulation model is constructed to evaluate how the freeway lane flow capacity change under different penetration rates of vehicles equipped with either ACC or CACC system. This simulation model is based on a calibrated driver behavioral model and the vehicle dynamics of the ACC and CACC systems. The model also utilizes data collected from a real experiment in which drivers' selections of time gaps are recorded. The simulation shows that highway capacity can be significantly increased when the CACC vehicles reach a moderate to high market penetration, as compared to both regular manually driven vehicles and vehicles equipped with only ACC.

Book An Evaluation of Traffic Simulation Models for Supporting ITS Development

Download or read book An Evaluation of Traffic Simulation Models for Supporting ITS Development written by Sharon Adams Boxill and published by . This book was released on 2000 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tools to evaluate networks under information supply are a vital necessity in light of the systems being implemented as part of the Intelligent Transportation Systems (ITS) deployment plan. One such tool is the traffic simulation model. This report presents an evaluation of the existing traffic simulation models to identify the models that can be potentially applied in ITS equipped networks. The traffic simulation models are categorized according to type (macroscopic, microscopic or mesoscopic), as well as functionality (highway, signal, integrated). The entire evaluation is conducted through two steps: initial screening and in-depth evaluation. The initial step generates a shorter but more specific list of traffic simulation models based on some pre-determined criteria. The in-depth evaluation identifies which model on the shorter list is suitable for a specific area of ITS applications. It is concluded from this research that presently CORSIM and INTEGRATION appear to have the highest probability of success in real-world applications. It is also found that by adding more calibration and validation in the U.S., the AIMSUN 2 and PARAMICS models will be brought to the forefront in the near term for use with ITS applications.

Book Modelling Heavy Vehicle Lane Changing

Download or read book Modelling Heavy Vehicle Lane Changing written by Sara Moridpour and published by . This book was released on 2010 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lane changing manoeuvres have a substantial impact on microscopic and macroscopic traffic flow characteristics due to the interference effect they have on surrounding vehicles. The interference effects of heavy vehicles' lane changing manoeuvres on surrounding traffic are likely to be greater than when passenger cars execute lane changing manoeuvre. While heavy vehicles account for a minority of traffic stream, heavy vehicles have a pronounced effect on traffic flow and produce a disproportionate effect particularly during heavy traffic conditions. Heavy vehicles impose physical and psychological effects on surrounding traffic which are the results of physical and operational characteristics of heavy vehicles. The number of heavy vehicles on urban freeways has increased over the past three decades and this trend is likely to continue over the next decade. Despite the increasing number of heavy vehicles on freeways, previous studies have predominantly focused on the behaviour of passenger car drivers. In the previous lane changing models, heavy vehicles are accommodated in current lane changing models by calibrating the parameters of a general lane changing model for heavy vehicles rather than by incorporating a lane changing model developed specifically for the heavy vehicle drivers. However, heavy vehicle and passenger car drivers may have fundamentally different lane changing behaviour.In this study, the trajectory dataset is based on the video images of two freeway sections. In general, extracting the trajectory dataset from video images makes it impossible to capture some physical (e.g. weight) and operational (e.g. power) characteristics of vehicles. The length of vehicles is one of their physical characteristics that can be extracted from video images. Therefore, vehicle length is used to identify heavy vehicles in this research. The vehicles with the length of equal to or greater than 6 meters are classified as heavy vehicles. This classification is consistent with the definition of the heavy vehicles in the trajectory dataset used for this study.In this research, the lane changing behaviour of a driver has been characterized as a sequence of three stages including motivation to change lanes, selection of the target lane and the execution of the lane change. This research has provided new insight into the role that traffic parameters associated with the surrounding vehicles plays in the lane changing behaviour of heavy vehicle and passenger car drivers. From detailed examination of vehicle trajectory data, differences were identified in the lane changing of heavy vehicle and passenger car drivers in terms of the three stages of lane changing behaviour.To understand the influencing factors on heavy vehicle drivers' lane changing, it is required to analyse the surrounding traffic characteristics at the time that the heavy vehicle drives change lanes as well as when they do not wish to execute lane changing manoeuvre. From detailed examination of the surrounding traffic characteristics, the explanatory variables in heavy vehicle drivers' lane changing decision were identified.A reliable model has been developed in this thesis to estimate the lane changing behaviour of heavy vehicle drivers. Drivers' lane changing behaviour has been characterised as a sequence of two stages: the decision to change lanes and the execution of the lane change. Hence, separate models were considered for those two stages of the heavy vehicle drivers' lane changing behaviour. Fuzzy logic was used to develop a model of the lane changing decision of heavy vehicle drivers. The lane changing decision has been defined as the motivation for selecting either the right adjacent lane (slower lane) or the left adjacent lane (faster lane). Therefore, two separate models were developed for the lane changing decision of heavy vehicle drivers: Lane Changing to Slower Lane (LCSL) and Lane Changing to Faster Lane (LCFL). The explanatory variables in motivating heavy vehicle drivers to move into the slower lane include: the front space gap, the rear space gap, the lag space gap in the right lane and the average speed of the surrounding vehicles in the current lane. The explanatory variables in motivating heavy vehicle drivers to move into the faster lane include: the front relative speed, the lag relative speed in the left lane and the average speeds of the surrounding vehicles in the current lane and the left lane. A triangular membership function was used for all fuzzy sets in the lane changing decision model. The leave-one-out cross-validation method was used to examine the accuracy of the models in estimating the lane changing manoeuvres of heavy vehicle drivers. The obtained results showed that the LCFL model has higher percentage of accurately estimating the heavy vehicle drivers' lane changing decision. This may be due to the fact that heavy vehicle drivers mainly move into the faster lane to gain speed advantages which could be modelled by the microscopic traffic characteristics of surrounding vehicles in the current and the left lanes. However, the heavy vehicle drivers may have other motivations for moving into the slower lane than only the differences in microscopic traffic characteristics in the current and the right lanes.The speed and acceleration/deceleration profiles of heavy vehicles were analysed in detail from the start to the end of lane changing manoeuvres. The results showed that heavy vehicle drivers maintain an almost constant speed during lane changing execution. They do not accelerate or decelerate to adjust their speed according to the speeds of the surrounding vehicles in the target lane. Subsequently, a simple constant speed model could be assumed for the heavy vehicles during the lane changing execution.Finally, the performance of the heavy vehicle drivers' lane changing model was examined macroscopically and microscopically using VISSIM (German abbreviation for 'traffic simulation in cities') microscopic traffic simulation model. The heavy vehicle lane changing model in VISSIM was substituted with a combination of the fuzzy logic heavy vehicle lane changing decision model and a constant speed lane changing execution model. The traffic measurements obtained from the fuzzy logic model were compared to those obtained from a calibrated VISSIM lane changing model and the actual field observations. The results show that using the fuzzy logic heavy vehicle lane changing model provided more accurate estimates of the macroscopic traffic measurements. The number of heavy vehicle lane changing manoeuvres estimated by the fuzzy logic model was found to be more accurate than the estimates from default lane changing model in VISSIM. The microscopic analysis of the lane changing manoeuvres shows that using the fuzzy logic model more accurately replicated the microscopic lane changing behaviour of the heavy vehicle drivers. In particular, the fuzzy logic model accurately replicates the observed speed profile of heavy vehicles and the observed space gap and speed profiles of the surrounding vehicles during lane changing manoeuvres. The superior performance of the fuzzy logic heavy vehicle drivers' lane changing model highlights the importance of developing an exclusive lane changing model for heavy vehicle drivers. Employing a purpose built heavy vehicle lane changing model has been shown to increase the accuracy of the microscopic traffic simulation model.

Book Hybrid Models of Traffic Flow

Download or read book Hybrid Models of Traffic Flow written by Jorge Andrés Laval and published by . This book was released on 2004 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Use of Microscopic Traffic Simulation and Field Data to Investigate Saturated and Free Flow Traffic Conditions at Arterial Signals

Download or read book Use of Microscopic Traffic Simulation and Field Data to Investigate Saturated and Free Flow Traffic Conditions at Arterial Signals written by Saravanan Gurupackiam and published by . This book was released on 2009 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the years microscopic traffic simulation has evolved as the premier tool to analyze complex and congested transportation networks. However, despite the robustness and wide spread use of traffic microsimulation, some gaps and limitations still exist that can affect the accuracy of these models' results. Moreover the change of traffic characteristics and driver behavior during the transition from undersaturated to saturated condition is not completely understood. This dissertation addresses these two issues. The road network chosen for the microscopic simulation and field data collection is a six lane main traffic artery located in Tuscaloosa, Alabama, USA. The entire research work contains three related research efforts, each conducted along the topic of this dissertation. The first research thrust focused on the sensitivity and accuracy of the microscopic traffic simulation. Specifically it investigated the sensitivity of MOEs to simulation initialization time, required number of repetitions, and major contributors of variation in MOEs. The second research thrust dealt with field investigation of operational parameters including gap acceptance and lane changing during different levels of traffic flow. The final research effort explored the variations in simulation results using existing embedded/default values of lane change parameters (lane change duration and look ahead distance), versus using values obtained from field observation for both free flow and saturated traffic conditions. From all the research efforts, the following broad conclusions were drawn, * Traffic flows at signals that are approaching saturation are still complex to analyze, and the interactions between traffic parameter are not well understood. * When traffic flow on a typical arterial approaches saturation, drivers take higher risks (eg: drivers accept smaller gaps). * A statistical analysis of gap acceptance and lane changing confirmed what is suspected intuitively. * Existing traffic microsimulation tools simplify some of the traffic parameters in simulation models. These parameters may be recoded or recalibrated for better accuracy of simulation results. * In traffic microsimulation an increased number of simulation runs certainly helps in stabilizing the variability of the MOE and it is advisable to use a longer simulation time (eg. 60 minutes) to reduce the variation of MOEs.

Book Fundamentals of Traffic Simulation

Download or read book Fundamentals of Traffic Simulation written by Jaume Barceló and published by Springer Science & Business Media. This book was released on 2011-01-06 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing power of computer technologies, the evolution of software en- neering and the advent of the intelligent transport systems has prompted traf c simulation to become one of the most used approaches for traf c analysis in s- port of the design and evaluation of traf c systems. The ability of traf c simulation to emulate the time variability of traf c phenomena makes it a unique tool for capturing the complexity of traf c systems. In recent years, traf c simulation – and namely microscopic traf c simulation – has moved from the academic to the professional world. A wide variety of traf- c simulation software is currently available on the market and it is utilized by thousands of users, consultants, researchers and public agencies. Microscopic traf c simulation based on the emulation of traf c ows from the dynamics of individual vehicles is becoming one the most attractive approaches. However, traf c simulation still lacks a uni ed treatment. Dozens of papers on theory and applications are published in scienti c journals every year. A search of simulation-related papers and workshops through the proceedings of the last annual TRB meetings would support this assertion, as would a review of the minutes from speci cally dedicated meetings such as the International Symposiums on Traf c Simulation (Yokohama, 2002; Lausanne, 2006; Brisbane, 2008) or the International Workshops on Traf c Modeling and Simulation (Tucson, 2001; Barcelona, 2003; Sedona, 2005; Graz 2008). Yet, the only comprehensive treatment of the subject to be found so far is in the user’s manuals of various software products.

Book Proceedings of SAE China Congress 2015  Selected Papers

Download or read book Proceedings of SAE China Congress 2015 Selected Papers written by China Society of Automotive Engineers and published by Springer. This book was released on 2015-11-30 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings gather outstanding papers submitted to the 2015 SAE-China Congress, the majority of which are from China, the biggest car maker as well as most dynamic car market in the world. The book covers a wide range of automotive topics, presenting the latest technical achievements in the industry. Many of the approaches presented can help technicians to solve the practical problems that most affect their daily work.