EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Plasma Physics

    Book Details:
  • Author : Alexander Piel
  • Publisher : Springer
  • Release : 2017-09-07
  • ISBN : 3319634275
  • Pages : 473 pages

Download or read book Plasma Physics written by Alexander Piel and published by Springer. This book was released on 2017-09-07 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. The guidelines of plasma physics are illustrated by a host of practical examples, preferentially from plasma diagnostics. There, Langmuir probe methods, laser interferometry, ionospheric sounding, Faraday rotation, and diagnostics of dusty plasmas are discussed. Though primarily addressing students in plasma physics, the book is easily accessible for researchers in neighboring disciplines, such as space science, astrophysics, material science, applied physics, and electrical engineering. This second edition has been thoroughly revised and contains substantially enlarged chapters on plasma diagnostics, dusty plasmas and plasma discharges. Probe techniques have been rearranged into basic theory and a host of practical examples for probe techniques in dc, rf, and space plasmas. New topics in dusty plasmas, such as plasma crystals, Yukawa balls, phase transitions and attractive forces have been adopted. The chapter on plasma discharges now contains a new section on conventional and high-power impulse magnetron sputtering. The recently discovered electrical asymmetry effect in capacitive rf-discharges is described. The text is based on an introductory course to plasma physics and advanced courses in plasma diagnostics, dusty plasmas, and plasma waves, which the author has taught at Kiel University for three decades. The pedagogical approach combines detailed explanations, a large number of illustrative figures, short summaries of the basics at the end of each chapter, and a selection of problems with detailed solutions.

Book Plasma Physics

    Book Details:
  • Author : Alexander Piel
  • Publisher : Springer Science & Business Media
  • Release : 2010-06-14
  • ISBN : 3642104916
  • Pages : 405 pages

Download or read book Plasma Physics written by Alexander Piel and published by Springer Science & Business Media. This book was released on 2010-06-14 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an outgrowth of courses in plasma physics which I have taught at Kiel University for many years. During this time I have tried to convince my students that plasmas as different as gas dicharges, fusion plasmas and space plasmas can be described in a uni ed way by simple models. The challenge in teaching plasma physics is its apparent complexity. The wealth of plasma phenomena found in so diverse elds makes it quite different from atomic physics, where atomic structure, spectral lines and chemical binding can all be derived from a single equation—the Schrödinger equation. I positively accept the variety of plasmas and refrain from subdividing plasma physics into the traditional, but arti cially separated elds, of hot, cold and space plasmas. This is why I like to confront my students, and the readers of this book, with examples from so many elds. By this approach, I believe, they will be able to become discoverers who can see the commonality between a falling apple and planetary motion. As an experimentalist, I am convinced that plasma physics can be best understood from a bottom-up approach with many illustrating examples that give the students con dence in their understanding of plasma processes. The theoretical framework of plasma physics can then be introduced in several steps of re nement. In the end, the student (or reader) will see that there is something like the Schrödinger equation, namely the Vlasov-Maxwell model of plasmas, from which nearly all phenomena in collisionless plasmas can be derived.

Book An Introduction to Plasma Physics and Its Space Applications  Volume 1

Download or read book An Introduction to Plasma Physics and Its Space Applications Volume 1 written by Luis Conde and published by Morgan & Claypool Publishers. This book was released on 2018-12-11 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: The growing number of scientific and technological applications of plasma physics in the field of Aerospace Engineering requires that graduate students and professionals understand their principles. This introductory book is the expanded version of class notes of lectures I taught for several years to students of Aerospace Engineering and Physics. It is intended as a reading guide, addressed to students and non-specialists to tackle later with more advanced texts. To make the subject more accessible the book does not follow the usual organization of standard textbooks in this field and is divided in two parts. The first introduces the basic kinetic theory (molecular collisions, mean free path, etc.) of neutral gases in equilibrium in connection to the undergraduate physics courses. The basic properties of ionized gases and plasmas (Debye length, plasma frequencies, etc.) are addressed in relation to their equilibrium states and the collisional processes at the microscopic level. The physical description of short and long-range (Coulomb) collisions and the more relevant collisions (elementary processes) between electrons' ions and neutral atoms or molecules are discussed. The second part introduces the physical description of plasmas as a statistical system of interacting particles introducing advanced concepts of kinetic theory, (non-equilibrium distribution functions, Boltzmann collision operator, etc). The fluid transport equations for plasmas of electron ions and neutral atoms and the hydrodynamic models of interest in space science and plasma technology are derived. The plasma production in the laboratory in the context of the physics of electric breakdown is also discussed. Finally, among the myriad of aerospace applications of plasma physics, the low pressure microwave electron multipactor breakdown and plasma thrusters for space propulsion are presented in two separate chapters.

Book Introduction to Plasma Physics

Download or read book Introduction to Plasma Physics written by Donald A. Gurnett and published by Cambridge University Press. This book was released on 2017-02-20 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing the principles and applications of plasma physics, this new edition is ideal as an advanced undergraduate or graduate-level text.

Book Complex and Dusty Plasmas

    Book Details:
  • Author : Vladimir E Fortov
  • Publisher : CRC Press
  • Release : 2019-08-30
  • ISBN : 9780367384630
  • Pages : 440 pages

Download or read book Complex and Dusty Plasmas written by Vladimir E Fortov and published by CRC Press. This book was released on 2019-08-30 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dusty or complex plasmas are plasmas containing solid or liquid charged particles referred to as dust. Naturally occurring in space, they are present in planetary rings and comet tails, as well as clouds found in the vicinity of artificial satellites and space stations. On a more earthly level, dusty plasmas are now being actively researched as dust plays a key role in technological plasma applications associated with etching technologies in microelectronics, as well as with production of thin films and nanoparticles. Complex and Dusty Plasmas: From Laboratory to Space provides a balanced and consistent picture of the current status of the field by covering new developments in experimental and theoretical research. Drawing from research performed across the earth and even beyond by an internationally diverse group of pioneering researchers, this book covers a wealth of topics. It delves into -- Major types of complex plasmas in ground-based and microgravity experiments Properties of the magnetized, thermal, cryogenic, ultraviolet, nuclear-induced complex plasmas and plasmas with nonspherical particles Major forces acting on the particles and features of the particle dynamics in complex plasmas, as well as basic plasma-particle interactions, Recent research results on phase transitions between crystalline and liquid complex plasma states Astrophysical aspects of dusty plasmas and numerical simulation of their properties Dust as a source of contamination in many applications including reactors An important feature of this work is the detailed discussion of unique experimental and theoretical aspects of complex plasmas related to the investigations under microgravity conditions performed onboard Mir and ISS space stations. Much of what we know today would not be possible without cooperation between researchers of various nations, many of whom serve as key contributors to this book. Whether deepening their knowledge of things interstellar or developing new applications and products for use in manufacturing, energy, and communication or even fields yet dreamt of, these pages provide the knowledge, approaches, and insight that all researchers of complex plasmas need.

Book Introduction to Plasma Physics

Download or read book Introduction to Plasma Physics written by D. A. Gurnett and published by Cambridge University Press. This book was released on 2005-01-06 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced undergraduate/beginning graduate text on space and laboratory plasma physics.

Book Characterizing Space Plasmas

Download or read book Characterizing Space Plasmas written by George K. Parks and published by Springer. This book was released on 2018-07-26 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This didactic book uses a data-driven approach to connect measurements made by plasma instruments to the real world. This approach makes full use of the instruments’ capability and examines the data at the most detailed level an experiment can provide. Students using this approach will learn what instruments can measure, and working with real-world data will pave their way to models consistent with these observations. While conceived as a teaching tool, the book contains a considerable amount of new information. It emphasizes recent results, such as particle measurements made from the Cluster ion experiment, explores the consequences of new discoveries, and evaluates new trends or techniques in the field. At the same time, the author ensures that the physical concepts used to interpret the data are general and widely applicable. The topics included help readers understand basic problems fundamental to space plasma physics. Some are appearing for the first time in a space physics textbook. Others present different perspectives and interpretations of old problems and models that were previously considered incontestable. This book is essential reading for graduate students in space plasma physics, and a useful reference for the broader astrophysics community.

Book Magnetohydrodynamics of Laboratory and Astrophysical Plasmas

Download or read book Magnetohydrodynamics of Laboratory and Astrophysical Plasmas written by Hans Goedbloed and published by Cambridge University Press. This book was released on 2019-01-31 with total page 995 pages. Available in PDF, EPUB and Kindle. Book excerpt: With ninety per cent of visible matter in the universe existing in the plasma state, an understanding of magnetohydrodynamics is essential for anyone looking to understand solar and astrophysical processes, from stars to accretion discs and galaxies; as well as laboratory applications focused on harnessing controlled fusion energy. This introduction to magnetohydrodynamics brings together the theory of plasma behavior with advanced topics including the applications of plasma physics to thermonuclear fusion and plasma- astrophysics. Topics covered include streaming and toroidal plasmas, nonlinear dynamics, modern computational techniques, incompressible plasma turbulence and extreme transonic and relativistic plasma flows. The numerical techniques needed to apply magnetohydrodynamics are explained, allowing the reader to move from theory to application and exploit the latest algorithmic advances. Bringing together two previous volumes: Principles of Magnetohydrodynamics and Advanced Magnetohydrodynamics, and completely updated with new examples, insights and applications, this volume constitutes a comprehensive reference for students and researchers interested in plasma physics, astrophysics and thermonuclear fusion.

Book Laboratory and Space Plasmas

Download or read book Laboratory and Space Plasmas written by Hiroshi Kikuchi and published by Springer. This book was released on 1989 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this workshop was to bring together laboratory, fusion, and space plasma physicists to exchange information and views on basic concepts and new ideas. Topics covered in the proceedings include: - extreme-state and fusion plasmas - dusty and dirty plasmas - double layers and acceleration - planetary lightning, discharges, and emissions - solar plasmas and 3He-rich flares - planetary, cometary, and interplanetary plasmas - structure and atmosphere of Comet Halley Emphasis is placed on basic correspondence between laboratory and space plasmas, with particular reference to recent observations and simulations. The topics are arranged to allow a direct comparison in the common language of plasma physics.

Book Relation Between Laboratory and Space Plasmas

Download or read book Relation Between Laboratory and Space Plasmas written by H. Kikuchi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the lectures presented at the International Workshop on Relation between Laboratory and Space Plasmas held at Gakushi-Kaikan (University Alumni Association) Kanda in Tokyo, Japan on 14 - 15 April, 1980. Its aim was to bring together laboratory, fusion and space plasma physicists and to highlight the communality of basic plasma phenomena, similarities and differences observed in the laboratory and in space, thus exchanging information tnd views on new ideas to link both areas. Although similar type of conferences were held in Europe and recently in the States, this is the first time we have had in Japan for such an international meeting, which may be regarded as an extended version of our national Workshop held twice at the Institute of Plasma Physics of Japan (IPPJ) in 1976 and in 1977 (IPPJ Research Report No. 286 and No. 365). The Workshop consisted of seven regular sessions and one special session with approximately ninety participants from allover the world. Thirty-six papers, invited and contributed, were presented, nine from U. S. A., three from U. S. S. R., two of each from Germany, France, India, one of each from Sweden, Canada, Belgium and fifteen from Japan. The topics covered were: (1) The Critical Velocity (2) Beam Plasma Discharges and Interactions (3) Double Layers and Shocks (4) Instabilities in the Equatorial and Auroral Electrojets (5) Turbulent and Anomalous Plasmas (6) Plasma Irregularities (7) Solar Plasma Phenomena (8) Active Experiments in Space Plasmas and Their Simulation in the Laboratory.

Book Theory of Space Plasma Microinstabilities

Download or read book Theory of Space Plasma Microinstabilities written by S. Peter Gary and published by Cambridge University Press. This book was released on 1993-09-16 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the linear theory of waves and instabilities that propagate in a collisionless plasma.

Book Dusty and Self Gravitational Plasmas in Space

Download or read book Dusty and Self Gravitational Plasmas in Space written by P. Bliokh and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The diverse and often surprising new facts about planetary rings and comet environments that were reported by the interplanetary missions oflate 1970s - 1980s stimulated investigations of the so-called dusty plasma. The number of scientific papers on the subject that have been published since is quite impressive. Recently, a few surveys and special journal issues have appeared. Time has come to integrate some of the knowledge in a book. Apparently, this is the first monograph on dusty and self-gravitational plasmas. While the circle of pertinent problems is rather clearly defined, not all of them are equally represented here. The authors have concentrated on cooperative phenomena (Le. waves and instabilities) in the dusty plasma and the effects of self-gravitation. At the same time, in an attempt to present the vast material consistently, we have included such topics as electrostatics of the dusty plasma and gravitoelectrodynamics of individual charged particles. Also mentioned are astrophysical implications, mostly concerning planetary rings. We hope that the book shall be of interest and value both to specialists and those (astro )physicists who have just discovered this area of plasma physics. We are thankful to many scientists actively working in the field of dusty plasma physics who have generously let us become acquainted with their results, sometimes prior to publication of their own papers: U. de Angelis, N. D'Angelo, o. Havnes, A. Mendis, M. Rosenberg, P. Shukla, F. Verheest, and E. Wollman.

Book Low Frequency Waves and Turbulence in Magnetized Laboratory Plasmas and in the Ionosphere

Download or read book Low Frequency Waves and Turbulence in Magnetized Laboratory Plasmas and in the Ionosphere written by Hans Pécseli and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Low Frequency Waves and Turbulence in Magnetized Laboratory Plasmas and in the Ionosphere was developed from courses taught by the author at the universities of Oslo and Tromso in Norway. Suitable for undergraduates, graduate students and researchers, the first part of the book is devoted to discussing some relevant plasma instabilities and the free energy that drives them. In the second part, the more advanced topics of nonlinear models and the interactions of many modes are discussed. Theoretical tools available for turbulence modelling are also outlined. The book summarizes a number of studies of low-frequency plasma waves, drift waves in particular, from laboratory and space experiments."--Prové de l'editor.

Book Kinetic Alfv  n Waves in Laboratory  Space  and Astrophysical Plasmas

Download or read book Kinetic Alfv n Waves in Laboratory Space and Astrophysical Plasmas written by De-Jin Wu and published by Springer Nature. This book was released on 2020-01-07 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic introduction to the observation and application of kinetic Alfven waves (KAWs) in various plasma environments, with a special focus on the solar-terrestrial coupling system. Alfven waves are low-frequency and long-wavelength fluctuations that pervade laboratory, space and cosmic plasmas. KAWs are dispersive Alfven waves with a short wavelength comparable to particle kinematic scales and hence can play important roles in the energization and transport of plasma particles, the formation of fine magneto-plasma structures, and the dissipation of turbulent Alfven waves. Since the 1990s, experimental studies on KAWs in laboratory and space plasmas have significantly advanced our understanding of KAWs, making them an increasingly interesting subject. Without a doubt, the solar–terrestrial coupling system provides us with a unique natural laboratory for the comprehensive study of KAWs. This book presents extensive observations of KAWs in solar and heliospheric plasmas, as well as numerous applications of KAWs in the solar-terrestrial coupling system, including solar atmosphere heating, solarwind turbulence, solar wind-magnetosphere interactions, and magnetosphere-ionosphere coupling. In addition, for the sake of consistency, the book includes the basic theories and physical properties of KAWs, as well as their experimental demonstrations in laboratory plasmas. In closing, it discusses possible applications of KAWs to other astrophysical plasmas. Accordingly, the book covers all the major aspects of KAWs in a coherent manner that will appeal to advanced graduate students and researchers whose work involves laboratory, space and astrophysical plasmas.

Book Workshop on Relation Between Laboratory and Space Plasmas

Download or read book Workshop on Relation Between Laboratory and Space Plasmas written by Purazuma-Kenkyūsho and published by . This book was released on 1977 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Basic Space Plasma Physics  Revised Edition

Download or read book Basic Space Plasma Physics Revised Edition written by Wolfgang Baumjohann and published by World Scientific Publishing Company. This book was released on 2012-03-20 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook begins with a description of the Earth's plasma environment, followed by the derivation of single particle motions in electromagnetic fields, with applications to the Earth's magnetosphere. Also discussed are the origin and effects of collisions and conductivities, formation of the ionosphere, magnetospheric convection and dynamics, and solar wind-magnetosphere coupling.The second half of the book presents a more theoretical foundation of plasma physics, starting with kinetic theory. Introducing moments of distribution function permits the derivation of the fluid equations, followed by an analysis of fluid boundaries, with the Earth's magnetopause and bow shock as examples, and finally, fluid and kinetic theory are applied to derive the relevant wave modes in a plasma.This revised edition seamlessly integrates new sections on magnetopause reconstruction, as well as instability theory and thermal fluctuations based on new developments in space physics. Applications such as the important problems of collisionless reconnection and collisionless shocks are covered, and some problems have also been included at the end of each chapter.

Book Principles of Magnetohydrodynamics

Download or read book Principles of Magnetohydrodynamics written by J. P. Goedbloed and published by Cambridge University Press. This book was released on 2004-08-05 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a modern and accessible introduction to magnetohydrodynamics (MHD). It describes the two main applications of plasma physics, laboratory research on thermo-nuclear fusion energy and plasma astrophysics of the solar system, stars and accretion disks, from the single viewpoint of MHD. This approach provides effective methods and insights for the interpretation of plasma phenomena on virtually all scales, from the laboratory to the universe. It equips the reader with the necessary tools to understand the complexities of plasma dynamics in extended magnetic structures. The classical MHD model is developed in detail without omitting steps in the derivations and problems are included at the end of each chapter. This text is ideal for senior-level undergraduate and graduate courses in plasma physics and astrophysics.