Download or read book Uncertainty and Vagueness in Knowledge Based Systems written by Rudolf Kruse and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary aim of this monograph is to provide a formal framework for the representation and management of uncertainty and vagueness in the field of artificial intelligence. It puts particular emphasis on a thorough analysis of these phenomena and on the development of sound mathematical modeling approaches. Beyond this theoretical basis the scope of the book includes also implementational aspects and a valuation of existing models and systems. The fundamental ambition of this book is to show that vagueness and un certainty can be handled adequately by using measure-theoretic methods. The presentation of applicable knowledge representation formalisms and reasoning algorithms substantiates the claim that efficiency requirements do not necessar ily require renunciation of an uncompromising mathematical modeling. These results are used to evaluate systems based on probabilistic methods as well as on non-standard concepts such as certainty factors, fuzzy sets or belief functions. The book is intended to be self-contained and addresses researchers and practioneers in the field of knowledge based systems. It is in particular suit able as a textbook for graduate-level students in AI, operations research and applied probability. A solid mathematical background is necessary for reading this book. Essential parts of the material have been the subject of courses given by the first author for students of computer science and mathematics held since 1984 at the University in Braunschweig.
Download or read book Knowledge Representation and Reasoning Under Uncertainty written by Michael Masuch and published by Springer Science & Business Media. This book was released on 1994-06-28 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is based on the International Conference Logic at Work, held in Amsterdam, The Netherlands, in December 1992. The 14 papers in this volume are selected from 86 submissions and 8 invited contributions and are all devoted to knowledge representation and reasoning under uncertainty, which are core issues of formal artificial intelligence. Nowadays, logic is not any longer mainly associated to mathematical and philosophical problems. The term applied logic has a far wider meaning, as numerous applications of logical methods, particularly in computer science, artificial intelligence, or formal linguistics, testify. As demonstrated also in this volume, a variety of non-standard logics gained increased importance for knowledge representation and reasoning under uncertainty.
Download or read book Knowledge Representation and Reasoning written by Ronald Brachman and published by Morgan Kaufmann. This book was released on 2004-05-19 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knowledge representation is at the very core of a radical idea for understanding intelligence. This book talks about the central concepts of knowledge representation developed over the years. It is suitable for researchers and practitioners in database management, information retrieval, object-oriented systems and artificial intelligence.
Download or read book Probabilistic Reasoning in Intelligent Systems written by Judea Pearl and published by Elsevier. This book was released on 2014-06-28 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.
Download or read book Uncertainty in Artificial Intelligence written by Laveen N. Kanal and published by North Holland. This book was released on 1986 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardbound. How to deal with uncertainty is a subject of much controversy in Artificial Intelligence. This volume brings together a wide range of perspectives on uncertainty, many of the contributors being the principal proponents in the controversy.Some of the notable issues which emerge from these papers revolve around an interval-based calculus of uncertainty, the Dempster-Shafer Theory, and probability as the best numeric model for uncertainty. There remain strong dissenting opinions not only about probability but even about the utility of any numeric method in this context.
Download or read book Principles of Knowledge Representation and Reasoning written by Jon Doyle and published by Morgan Kaufmann. This book was released on 1994 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings of KR '94 comprise 55 papers on topics including deduction an search, description logics, theories of knowledge and belief, nonmonotonic reasoning and belief revision, action and time, planning and decision-making and reasoning about the physical world, and the relations between KR
Download or read book Logical Structures for Representation of Knowledge and Uncertainty written by Ellen Hisdal and published by Physica. This book was released on 1998-01-15 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is the business of science not to create laws, but to discover them. We do not originate the constitution of our own minds, greatly as it may be in our power to modify their character. And as the laws of the human intellect do not depend upon our will, so the forms of science, of (1. 1) which they constitute the basis, are in all essential regards independent of individual choice. George Boole [10, p. llJ 1. 1 Comparison with Traditional Logic The logic of this book is a probability logic built on top of a yes-no or 2-valued logic. It is divided into two parts, part I: BP Logic, and part II: M Logic. 'BP' stands for 'Bayes Postulate'. This postulate says that in the absence of knowl edge concerning a probability distribution over a universe or space one should assume 1 a uniform distribution. 2 The M logic of part II does not make use of Bayes postulate or of any other postulates or axioms. It relies exclusively on purely deductive reasoning following from the definition of probabilities. The M logic goes an important step further than the BP logic in that it can distinguish between certain types of information supply sentences which have the same representation in the BP logic as well as in traditional first order logic, although they clearly have different meanings (see example 6. 1. 2; also comments to the Paris-Rome problem of eqs. (1. 8), (1. 9) below).
Download or read book Principles of Knowledge Representation and Reasoning written by James Allen and published by Morgan Kaufmann. This book was released on 1991 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings of the Second International Conference on [title] held in Cambridge, Massachusetts, April 1991, comprise 55 papers on topics including the logical specifications of reasoning behaviors and representation formalisms, comparative analysis of competing algorithms and formalisms, and ana
Download or read book Graph Structures for Knowledge Representation and Reasoning written by Madalina Croitoru and published by Springer. This book was released on 2018-03-29 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-conference proceedings of the 5th International Workshop on Graph Structures for Knowledge Representation and Reasoning, GKR 2017, held in Melbourne, VIC, Australia, in August 2017, associated with IJCAI 2017, the 26th International Joint Conference on Artificial Intelligence. The 7 revised full papers presented were reviewed and selected from 9 submissions. The contributions address various issues for knowledge representation and reasoning and the common graph-theoretic background allows to bridge the gap between the different communities.
Download or read book Principles of Knowledge Representation and Reasoning written by Bernhard Nebel and published by Morgan Kaufmann Publishers. This book was released on 1992 with total page 834 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stringently reviewed papers presented at the October 1992 meeting held in Cambridge, Mass., address such topics as nonmonotonic logic; taxonomic logic; specialized algorithms for temporal, spatial, and numerical reasoning; and knowledge representation issues in planning, diagnosis, and natural langu
Download or read book Qualitative Methods for Reasoning Under Uncertainty written by Simon Parsons and published by MIT Press. This book was released on 2001 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using qualitative methods to deal with imperfect information.
Download or read book Reasoning About Knowledge written by Ronald Fagin and published by MIT Press. This book was released on 2004-01-09 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reasoning about knowledge—particularly the knowledge of agents who reason about the world and each other's knowledge—was once the exclusive province of philosophers and puzzle solvers. More recently, this type of reasoning has been shown to play a key role in a surprising number of contexts, from understanding conversations to the analysis of distributed computer algorithms. Reasoning About Knowledge is the first book to provide a general discussion of approaches to reasoning about knowledge and its applications to distributed systems, artificial intelligence, and game theory. It brings eight years of work by the authors into a cohesive framework for understanding and analyzing reasoning about knowledge that is intuitive, mathematically well founded, useful in practice, and widely applicable. The book is almost completely self-contained and should be accessible to readers in a variety of disciplines, including computer science, artificial intelligence, linguistics, philosophy, cognitive science, and game theory. Each chapter includes exercises and bibliographic notes.
Download or read book Principles of Knowledge Representation and Reasoning written by Luigia Carlucci Aiello and published by Morgan Kaufmann. This book was released on 1996 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Probabilistic Reasoning in Expert Systems written by Richard E. Neapolitan and published by CreateSpace. This book was released on 2012-06-01 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a reprint of the seminal 1989 book Probabilistic Reasoning in Expert systems: Theory and Algorithms, which helped serve to create the field we now call Bayesian networks. It introduces the properties of Bayesian networks (called causal networks in the text), discusses algorithms for doing inference in Bayesian networks, covers abductive inference, and provides an introduction to decision analysis. Furthermore, it compares rule-base experts systems to ones based on Bayesian networks, and it introduces the frequentist and Bayesian approaches to probability. Finally, it provides a critique of the maximum entropy formalism. Probabilistic Reasoning in Expert Systems was written from the perspective of a mathematician with the emphasis being on the development of theorems and algorithms. Every effort was made to make the material accessible. There are ample examples throughout the text. This text is important reading for anyone interested in both the fundamentals of Bayesian networks and in the history of how they came to be. It also provides an insightful comparison of the two most prominent approaches to probability.
Download or read book A Mathematical Theory of Evidence written by Glenn Shafer and published by Princeton University Press. This book was released on 2020-06-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Both in science and in practical affairs we reason by combining facts only inconclusively supported by evidence. Building on an abstract understanding of this process of combination, this book constructs a new theory of epistemic probability. The theory draws on the work of A. P. Dempster but diverges from Depster's viewpoint by identifying his "lower probabilities" as epistemic probabilities and taking his rule for combining "upper and lower probabilities" as fundamental. The book opens with a critique of the well-known Bayesian theory of epistemic probability. It then proceeds to develop an alternative to the additive set functions and the rule of conditioning of the Bayesian theory: set functions that need only be what Choquet called "monotone of order of infinity." and Dempster's rule for combining such set functions. This rule, together with the idea of "weights of evidence," leads to both an extensive new theory and a better understanding of the Bayesian theory. The book concludes with a brief treatment of statistical inference and a discussion of the limitations of epistemic probability. Appendices contain mathematical proofs, which are relatively elementary and seldom depend on mathematics more advanced that the binomial theorem.
Download or read book Logical Foundations of Artificial Intelligence written by Michael R. Genesereth and published by Morgan Kaufmann. This book was released on 2012-07-05 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended both as a text for advanced undergraduates and graduate students, and as a key reference work for AI researchers and developers, Logical Foundations of Artificial Intelligence is a lucid, rigorous, and comprehensive account of the fundamentals of artificial intelligence from the standpoint of logic. The first section of the book introduces the logicist approach to AI--discussing the representation of declarative knowledge and featuring an introduction to the process of conceptualization, the syntax and semantics of predicate calculus, and the basics of other declarative representations such as frames and semantic nets. This section also provides a simple but powerful inference procedure, resolution, and shows how it can be used in a reasoning system. The next several chapters discuss nonmonotonic reasoning, induction, and reasoning under uncertainty, broadening the logical approach to deal with the inadequacies of strict logical deduction. The third section introduces modal operators that facilitate representing and reasoning about knowledge. This section also develops the process of writing predicate calculus sentences to the metalevel--to permit sentences about sentences and about reasoning processes. The final three chapters discuss the representation of knowledge about states and actions, planning, and intelligent system architecture. End-of-chapter bibliographic and historical comments provide background and point to other works of interest and research. Each chapter also contains numerous student exercises (with solutions provided in an appendix) to reinforce concepts and challenge the learner. A bibliography and index complete this comprehensive work.
Download or read book An Introduction to Fuzzy Logic Applications in Intelligent Systems written by Ronald R. Yager and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Fuzzy Logic Applications in Intelligent Systems consists of a collection of chapters written by leading experts in the field of fuzzy sets. Each chapter addresses an area where fuzzy sets have been applied to situations broadly related to intelligent systems. The volume provides an introduction to and an overview of recent applications of fuzzy sets to various areas of intelligent systems. Its purpose is to provide information and easy access for people new to the field. The book also serves as an excellent reference for researchers in the field and those working in the specifics of systems development. People in computer science, especially those in artificial intelligence, knowledge-based systems, and intelligent systems will find this to be a valuable sourcebook. Engineers, particularly control engineers, will also have a strong interest in this book. Finally, the book will be of interest to researchers working in decision support systems, operations research, decision theory, management science and applied mathematics. An Introduction to Fuzzy Logic Applications in Intelligent Systems may also be used as an introductory text and, as such, it is tutorial in nature.