Download or read book Kac Moody Groups their Flag Varieties and Representation Theory written by Shrawan Kumar and published by Springer Science & Business Media. This book was released on 2002-09-10 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Most of these topics appear here for the first time in book form. Many of them are interesting even in the classical case of semi-simple algebraic groups. Some appendices recall useful results from other areas, so the work may be considered self-contained, although some familiarity with semi-simple Lie algebras or algebraic groups is helpful. It is clear that this book is a valuable reference for all those interested in flag varieties and representation theory in the semi-simple or Kac-Moody case." —MATHEMATICAL REVIEWS "A lot of different topics are treated in this monumental work. . . . many of the topics of the book will be useful for those only interested in the finite-dimensional case. The book is self contained, but is on the level of advanced graduate students. . . . For the motivated reader who is willing to spend considerable time on the material, the book can be a gold mine. " —ZENTRALBLATT MATH
Download or read book Lie Algebras of Finite and Affine Type written by Roger William Carter and published by Cambridge University Press. This book was released on 2005-10-27 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough but relaxed mathematical treatment of Lie algebras.
Download or read book Infinite Dimensional Lie Algebras written by Victor G. Kac and published by Springer Science & Business Media. This book was released on 2013-11-09 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Kac Moody and Virasoro Algebras written by Peter Goddard and published by World Scientific. This book was released on 1988 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume reviews the subject of Kac-Moody and Virasoro Algebras. It serves as a reference book for physicists with commentary notes and reprints.
Download or read book Introduction to Kac Moody Algebra written by Zhexian Wan and published by World Scientific. This book was released on 1991 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to a rapidly growing subject of modern mathematics, the Kac-Moody algebra, which was introduced by V Kac and R Moody simultanously and independently in 1968.
Download or read book Introduction to Finite and Infinite Dimensional Lie Super algebras written by Neelacanta Sthanumoorthy and published by Academic Press. This book was released on 2016-04-26 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. Introduction to Finite and Infinite Dimensional Lie Algebras and Superalgebras introduces the theory of Lie superalgebras, their algebras, and their representations. The material covered ranges from basic definitions of Lie groups to the classification of finite-dimensional representations of semi-simple Lie algebras. While discussing all classes of finite and infinite dimensional Lie algebras and Lie superalgebras in terms of their different classes of root systems, the book focuses on Kac-Moody algebras. With numerous exercises and worked examples, it is ideal for graduate courses on Lie groups and Lie algebras. - Discusses the fundamental structure and all root relationships of Lie algebras and Lie superalgebras and their finite and infinite dimensional representation theory - Closely describes BKM Lie superalgebras, their different classes of imaginary root systems, their complete classifications, root-supermultiplicities, and related combinatorial identities - Includes numerous tables of the properties of individual Lie algebras and Lie superalgebras - Focuses on Kac-Moody algebras
Download or read book Lie Algebras with Triangular Decompositions written by Robert V. Moody and published by Wiley-Interscience. This book was released on 1995-04-17 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: Imparts a self-contained development of the algebraic theory of Kac-Moody algebras, their representations and close relatives--the Virasoro and Heisenberg algebras. Focuses on developing the theory of triangular decompositions and part of the Kac-Moody theory not specific to the affine case. Also covers lattices, and finite root systems, infinite-dimensional theory, Weyl groups and conjugacy theorems.
Download or read book Langlands Correspondence for Loop Groups written by Edward Frenkel and published by Cambridge University Press. This book was released on 2007-06-28 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first account of local geometric Langlands Correspondence, a new area of mathematical physics developed by the author.
Download or read book Kac Moody Lie Algebras and Related Topics written by Neelacanta Sthanumoorthy and published by American Mathematical Soc.. This book was released on 2004 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the proceedings of the Ramanujan International Symposium on Kac-Moody Lie algebras and their applications. The symposium provided researchers in mathematics and physics with the opportunity to discuss new developments in this rapidly-growing area of research. The book contains several excellent articles with new and significant results. It is suitable for graduate students and researchers working in Kac-Moody Lie algebras, their applications, and related areas of research.
Download or read book Introduction To Kac moody Algebras written by Zhe-xian Wan and published by World Scientific. This book was released on 1991-03-29 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to a rapidly growing subject of modern mathematics, the Kac-Moody algebra, which was introduced by V Kac and R Moody simultanously and independently in 1968.
Download or read book Vertex Algebras and Algebraic Curves written by Edward Frenkel and published by American Mathematical Soc.. This book was released on 2004-08-25 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.
Download or read book Group Theory in Physics written by John F. Cornwell and published by Academic Press. This book was released on 1997-07-11 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, an abridgment of Volumes I and II of the highly respected Group Theory in Physics, presents a carefully constructed introduction to group theory and its applications in physics. The book provides anintroduction to and description of the most important basic ideas and the role that they play in physical problems. The clearly written text contains many pertinent examples that illustrate the topics, even for those with no background in group theory.This work presents important mathematical developments to theoretical physicists in a form that is easy to comprehend and appreciate. Finite groups, Lie groups, Lie algebras, semi-simple Lie algebras, crystallographic point groups and crystallographic space groups, electronic energy bands in solids, atomic physics, symmetry schemes for fundamental particles, and quantum mechanics are all covered in this compact new edition. - Covers both group theory and the theory of Lie algebras - Includes studies of solid state physics, atomic physics, and fundamental particle physics - Contains a comprehensive index - Provides extensive examples
Download or read book Lectures On Infinite dimensional Lie Algebra written by Minoru Wakimoto and published by World Scientific. This book was released on 2001-10-26 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: The representation theory of affine Lie algebras has been developed in close connection with various areas of mathematics and mathematical physics in the last two decades. There are three excellent books on it, written by Victor G Kac. This book begins with a survey and review of the material treated in Kac's books. In particular, modular invariance and conformal invariance are explained in more detail. The book then goes further, dealing with some of the recent topics involving the representation theory of affine Lie algebras. Since these topics are important not only in themselves but also in their application to some areas of mathematics and mathematical physics, the book expounds them with examples and detailed calculations.
Download or read book Physics and Mathematics of Strings written by Lars Brink and published by World Scientific. This book was released on 1990 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vadim Knizhnik was one of the most promising theoretical physicists in the world. Unfortunately, he passed away at the very young age of 25 years. This memorial volume is to honor his contributions in Theoretical Physics. This is perhaps one of the most important collections of articles on the theoretical developments in String Theory, Conformal Field Theory and related topics. It consists of contributions from world-renowned physicists who have met Vadim Knizhnik personally and whom the late Knizhnik really respected. The contributions are systematic and pedagogical in format.
Download or read book Vertex Operators in Mathematics and Physics written by J. Lepowsky and published by Springer Science & Business Media. This book was released on 2013-03-08 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: James Lepowsky t The search for symmetry in nature has for a long time provided representation theory with perhaps its chief motivation. According to the standard approach of Lie theory, one looks for infinitesimal symmetry -- Lie algebras of operators or concrete realizations of abstract Lie algebras. A central theme in this volume is the construction of affine Lie algebras using formal differential operators called vertex operators, which originally appeared in the dual-string theory. Since the precise description of vertex operators, in both mathematical and physical settings, requires a fair amount of notation, we do not attempt it in this introduction. Instead we refer the reader to the papers of Mandelstam, Goddard-Olive, Lepowsky-Wilson and Frenkel-Lepowsky-Meurman. We have tried to maintain consistency of terminology and to some extent notation in the articles herein. To help the reader we shall review some of the terminology. We also thought it might be useful to supplement an earlier fairly detailed exposition of ours [37] with a brief historical account of vertex operators in mathematics and their connection with affine algebras. Since we were involved in the development of the subject, the reader should be advised that what follows reflects our own understanding. For another view, see [29].1 t Partially supported by the National Science Foundation through the Mathematical Sciences Research Institute and NSF Grant MCS 83-01664. 1 We would like to thank Igor Frenkel for his valuable comments on the first draft of this introduction.
Download or read book Infinite Dimensional Lie Algebras And Groups written by Victor G Kac and published by World Scientific. This book was released on 1989-07-01 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents:Integrable Representation of Kac-Moody Algebras: Results and Open Problems (V Chari & A Pressley)Existence of Certain Components in the Tensor Product of Two Integrable Highest Weight Modules for Kac-Moody Algebras (SKumar)Frobenius Action on the B-Cohomology (O Mathieu)Certain Rank Two Subsystems of Kac-Moody Root Systems (J Morita)Lie Groups Associated to Kac-Moody Lie Algebras: An Analytic Approach (E Rodriguez-Carrington)Almost Split-K-Forms of Kac-Moody Algebras (G Rousseau)Global Representations of the Diffeomorphism Groups of the Circle (F Bien)Path Space Realization of the Basic Representation of An(1) (E Date et al)Boson-Fermion Correspondence Over (C De Concini et al)Classification of Modular Invariant Representations of Affine Algebras (V G Kac & M Wakimoto)Standard Monomial Theory for SL2 (V Lakshmibai & C S Seshadri)Some Results on Modular Invariant Representations (S Lu)Current Algebras in 3+1 Space-Time Dimensions (J Mickelson)Standard Representations of An(1) (M Primc)Representations of the Algebra Uq(sI(2)), q-Orthogonal Polynomials and Invariants of Links (A N Kirillov & N Yu Reshetikhin)Infinite Super Grassmannians and Super Plücker Equations (M J Bergvelt)Drinfeld-Sokolov Hierarchies and t-Functions (H J Imbens)Super Boson-Fermion Correspondence of Type B (V G Kac & J W van de Leur)Prym Varieties and Soliton Equations (T Shiota)Polynomial Solutions of the BKP Hierarchy and Projective Representations of Symmetric Groups (Y You)Toward Generalized Macdonald's Identities (D Bernard)Conformal Theories with Non-Linearly Extended Virasoro Symmetries and Lie Algebra Classification (A Bilal & J-LGervais)Extended Conformal Algebras from Kac-Moody Algebras (P Bouwknegt)Meromorphic Conformal Field Theory (P Goddard)Local Extensions of the U(1) Current Algebra and Their Positive Energy Representations (R R Paunov & I T Todorov)Conformal Field Theory on Moduli Family of Stable Curves with Gauge Symmetries (A Tsuchiya & Y Yamada) Readership: Mathematicians and mathematical physicists
Download or read book Lie Algebras Part 2 written by E.A. de Kerf and published by Elsevier. This book was released on 1997-10-30 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the long awaited follow-up to Lie Algebras, Part I which covered a major part of the theory of Kac-Moody algebras, stressing primarily their mathematical structure. Part II deals mainly with the representations and applications of Lie Algebras and contains many cross references to Part I. The theoretical part largely deals with the representation theory of Lie algebras with a triangular decomposition, of which Kac-Moody algebras and the Virasoro algebra are prime examples. After setting up the general framework of highest weight representations, the book continues to treat topics as the Casimir operator and the Weyl-Kac character formula, which are specific for Kac-Moody algebras. The applications have a wide range. First, the book contains an exposition on the role of finite-dimensional semisimple Lie algebras and their representations in the standard and grand unified models of elementary particle physics. A second application is in the realm of soliton equations and their infinite-dimensional symmetry groups and algebras. The book concludes with a chapter on conformal field theory and the importance of the Virasoro and Kac-Moody algebras therein.