Download or read book Iterative Partition Based Moving Horizon State Estimation written by René Schneider and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Proximity Moving Horizon Estimation written by Meriem Gharbi and published by Logos Verlag Berlin GmbH. This book was released on 2022-04-01 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, we develop and analyze a novel framework for moving horizon estimation (MHE) of linear and nonlinear constrained discrete-time systems, which we refer to as proximity moving horizon estimation. The conceptual idea of the proposed framework is to employ a stabilizing a priori solution in order to ensure stability of MHE and to combine it with an online convex optimization in order to obtain an improved performance without jeopardizing stability. The goal of this thesis is to provide proximity-based MHE approaches with desirable theoretical properties and for which reliable and numerically efficient algorithms allow the estimator to be applied in real-time applications. In more detail, we present constructive and simple MHE design procedures which are tailored to the considered class of dynamical systems in order to guarantee important properties of the resulting estimation error dynamics. Furthermore, we develop computationally efficient MHE algorithms in which a suboptimal state estimate is computed at each time instant after an arbitrary and limited number of optimization algorithm iterations. In particular, we introduce a novel class of anytime MHE algorithms which ensure desirable stability and performance properties of the estimator for any number of optimization algorithm iterations, including the case of a single iteration per time instant. In addition to the obtained theoretical results, we discuss the tuning of the performance criteria in proximity MHE given prior knowledge on the system disturbances and illustrate the theoretical properties and practical benefits of the proposed approaches with various numerical examples from the literature.
Download or read book 10th International Symposium on Process Systems Engineering written by Rita Maria de Brito Alves and published by Elsevier. This book was released on 2009 with total page 1229 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 10th International Symposium on Process Systems Engineering, PSE'09, will be held in Salvador-Bahia, Brazil on August 16-20, 2009. The special focus of PSE 2009 is Sustainability, Energy and Engineering. PSE 2009 is the tenth in the triennial series of international symposia on process systems engineering initiated in 1982. The meeting is brings together the worldwide PSE community of researchers and practitioners who are involved in the creation and application of computing-based methodologies for planning, design, operation, control and maintenance of chemical and petrochemical process industries. PSE'09 will look at how the PSE methods and tools can support sustainable resource systems and emerging technologies in the areas of green engineering: environmentally conscious design of industrial processes. PSE methods and tools support: - sustainable resource systems - emerging technologies in the areas of green engineering - environmentally conscious design of industrial processes
Download or read book 10th International Symposium on Process Systems Engineering PSE2009 written by Rita Maria de Brito Alves and published by Elsevier. This book was released on 2009-08-05 with total page 1230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the proceedings of the 10e of a series of international symposia on process systems engineering (PSE) initiated in 1982. The special focus of PSE09 is how PSE methods can support sustainable resource systems and emerging technologies in the areas of green engineering. * Contains fully searchable CD of all printed contributions * Focus on sustainable green engineering * 9 Plenary papers, 21 Keynote lectures by leading experts in the field
Download or read book Artificial Intelligence in Manufacturing written by Masoud Soroush and published by Elsevier. This book was released on 2024-01-22 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence in Manufacturing: Concepts and Methods explains the most successful emerging techniques for applying AI to engineering problems. Artificial intelligence is increasingly being applied to all engineering disciplines, producing more insights into how we understand the world and allowing us to create products in new ways. This book unlocks the advantages of this technology for manufacturing by drawing on work by leading researchers who have successfully developed methods that can apply to a range of engineering applications. The book addresses educational challenges needed for widespread implementation of AI and also provides detailed technical instructions for the implementation of AI methods. Drawing on research in computer science, physics and a range of engineering disciplines, this book tackles the interdisciplinary challenges of the subject to introduce new thinking to important manufacturing problems. - Presents AI concepts from the computer science field using language and examples designed to inspire engineering graduates - Provides worked examples throughout to help readers fully engage with the methods described - Includes concepts that are supported by definitions for key terms and chapter summaries
Download or read book State Estimation for Robotics written by Timothy D. Barfoot and published by Cambridge University Press. This book was released on 2017-07-31 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern look at state estimation, targeted at students and practitioners of robotics, with emphasis on three-dimensional applications.
Download or read book Iterative Methods for Sparse Linear Systems written by Yousef Saad and published by SIAM. This book was released on 2003-04-01 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- General.
Download or read book Optimal State Estimation written by Dan Simon and published by John Wiley & Sons. This book was released on 2006-06-19 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: A bottom-up approach that enables readers to master and apply the latest techniques in state estimation This book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering. While there are other textbooks that treat state estimation, this one offers special features and a unique perspective and pedagogical approach that speed learning: * Straightforward, bottom-up approach begins with basic concepts and then builds step by step to more advanced topics for a clear understanding of state estimation * Simple examples and problems that require only paper and pen to solve lead to an intuitive understanding of how theory works in practice * MATLAB(r)-based source code that corresponds to examples in the book, available on the author's Web site, enables readers to recreate results and experiment with other simulation setups and parameters Armed with a solid foundation in the basics, readers are presented with a careful treatment of advanced topics, including unscented filtering, high order nonlinear filtering, particle filtering, constrained state estimation, reduced order filtering, robust Kalman filtering, and mixed Kalman/H? filtering. Problems at the end of each chapter include both written exercises and computer exercises. Written exercises focus on improving the reader's understanding of theory and key concepts, whereas computer exercises help readers apply theory to problems similar to ones they are likely to encounter in industry. With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory. It also serves as a reference for engineers and science professionals across a wide array of industries.
Download or read book Rollout Policy Iteration and Distributed Reinforcement Learning written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2021-08-20 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to develop in greater depth some of the methods from the author's Reinforcement Learning and Optimal Control recently published textbook (Athena Scientific, 2019). In particular, we present new research, relating to systems involving multiple agents, partitioned architectures, and distributed asynchronous computation. We pay special attention to the contexts of dynamic programming/policy iteration and control theory/model predictive control. We also discuss in some detail the application of the methodology to challenging discrete/combinatorial optimization problems, such as routing, scheduling, assignment, and mixed integer programming, including the use of neural network approximations within these contexts. The book focuses on the fundamental idea of policy iteration, i.e., start from some policy, and successively generate one or more improved policies. If just one improved policy is generated, this is called rollout, which, based on broad and consistent computational experience, appears to be one of the most versatile and reliable of all reinforcement learning methods. In this book, rollout algorithms are developed for both discrete deterministic and stochastic DP problems, and the development of distributed implementations in both multiagent and multiprocessor settings, aiming to take advantage of parallelism. Approximate policy iteration is more ambitious than rollout, but it is a strictly off-line method, and it is generally far more computationally intensive. This motivates the use of parallel and distributed computation. One of the purposes of the monograph is to discuss distributed (possibly asynchronous) methods that relate to rollout and policy iteration, both in the context of an exact and an approximate implementation involving neural networks or other approximation architectures. Much of the new research is inspired by the remarkable AlphaZero chess program, where policy iteration, value and policy networks, approximate lookahead minimization, and parallel computation all play an important role.
Download or read book Advances in Control written by Paul M. Frank and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Control contains keynote contributions and tutorial material from the fifth European Control Conference, held in Germany in September 1999. The topics covered are of particular relevance to all academics and practitioners in the field of modern control engineering. These include: - Modern Control Theory - Fault Tolerant Control Systems - Linear Descriptor Systems - Generic Robust Control Design - Verification of Hybrid Systems - New Industrial Perspectives - Nonlinear System Identification - Multi-Modal Telepresence Systems - Advanced Strategies for Process Control - Nonlinear Predictive Control - Logic Controllers of Continuous Plants - Two-dimensional Linear Systems. This important collection of work is introduced by Professor P.M. Frank who has almost forty years of experience in the field of automatic control. State-of-the-art research, expert opinions and future developments in control theory and its industrial applications, combine to make this an essential volume for all those involved in control engineering.
Download or read book Predictive Modular Neural Networks written by Vassilios Petridis and published by Springer Science & Business Media. This book was released on 1998-09-30 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of this book is predictive modular neural networks and their ap plication to time series problems: classification, prediction and identification. The intended audience is researchers and graduate students in the fields of neural networks, computer science, statistical pattern recognition, statistics, control theory and econometrics. Biologists, neurophysiologists and medical engineers may also find this book interesting. In the last decade the neural networks community has shown intense interest in both modular methods and time series problems. Similar interest has been expressed for many years in other fields as well, most notably in statistics, control theory, econometrics etc. There is a considerable overlap (not always recognized) of ideas and methods between these fields. Modular neural networks come by many other names, for instance multiple models, local models and mixtures of experts. The basic idea is to independently develop several "subnetworks" (modules), which may perform the same or re lated tasks, and then use an "appropriate" method for combining the outputs of the subnetworks. Some of the expected advantages of this approach (when compared with the use of "lumped" or "monolithic" networks) are: superior performance, reduced development time and greater flexibility. For instance, if a module is removed from the network and replaced by a new module (which may perform the same task more efficiently), it should not be necessary to retrain the aggregate network.
Download or read book Planning Algorithms written by Steven M. LaValle and published by Cambridge University Press. This book was released on 2006-05-29 with total page 844 pages. Available in PDF, EPUB and Kindle. Book excerpt: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. Written for computer scientists and engineers with interests in artificial intelligence, robotics, or control theory, this is the only book on this topic that tightly integrates a vast body of literature from several fields into a coherent source for teaching and reference in a wide variety of applications. Difficult mathematical material is explained through hundreds of examples and illustrations.
Download or read book Handbook of Model Predictive Control written by Saša V. Raković and published by Springer. This book was released on 2018-09-01 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today. The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using “computationally intensive controls,” so the second part of this book addresses the solution of optimization problems in “real” time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance. The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.
Download or read book Reinforcement Learning second edition written by Richard S. Sutton and published by MIT Press. This book was released on 2018-11-13 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
Download or read book Networked and Distributed Predictive Control written by Panagiotis D. Christofides and published by Springer Science & Business Media. This book was released on 2011-04-07 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Networked and Distributed Predictive Control presents rigorous, yet practical, methods for the design of networked and distributed predictive control systems – the first book to do so. The design of model predictive control systems using Lyapunov-based techniques accounting for the influence of asynchronous and delayed measurements is followed by a treatment of networked control architecture development. This shows how networked control can augment dedicated control systems in a natural way and takes advantage of additional, potentially asynchronous and delayed measurements to maintain closed loop stability and significantly to improve closed-loop performance. The text then shifts focus to the design of distributed predictive control systems that cooperate efficiently in computing optimal manipulated input trajectories that achieve desired stability, performance and robustness specifications but spend a fraction of the time required by centralized control systems. Key features of this book include: • new techniques for networked and distributed control system design; • insight into issues associated with networked and distributed predictive control and their solution; • detailed appraisal of industrial relevance using computer simulation of nonlinear chemical process networks and wind- and solar-energy-generation systems; and • integrated exposition of novel research topics and rich resource of references to significant recent work. A full understanding of Networked and Distributed Predictive Control requires a basic knowledge of differential equations, linear and nonlinear control theory and optimization methods and the book is intended for academic researchers and graduate students studying control and for process control engineers. The constant attention to practical matters associated with implementation of the theory discussed will help each of these groups understand the application of the book’s methods in greater depth.
Download or read book Feedback Systems written by Karl Johan Åström and published by Princeton University Press. This book was released on 2021-02-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory
Download or read book Decomposition Techniques in Mathematical Programming written by Antonio J. Conejo and published by Springer Science & Business Media. This book was released on 2006-04-28 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization plainly dominates the design, planning, operation, and c- trol of engineering systems. This is a book on optimization that considers particular cases of optimization problems, those with a decomposable str- ture that can be advantageously exploited. Those decomposable optimization problems are ubiquitous in engineering and science applications. The book considers problems with both complicating constraints and complicating va- ables, and analyzes linear and nonlinear problems, with and without in- ger variables. The decomposition techniques analyzed include Dantzig-Wolfe, Benders, Lagrangian relaxation, Augmented Lagrangian decomposition, and others. Heuristic techniques are also considered. Additionally, a comprehensive sensitivity analysis for characterizing the solution of optimization problems is carried out. This material is particularly novel and of high practical interest. This book is built based on many clarifying, illustrative, and compu- tional examples, which facilitate the learning procedure. For the sake of cl- ity, theoretical concepts and computational algorithms are assembled based on these examples. The results are simplicity, clarity, and easy-learning. We feel that this book is needed by the engineering community that has to tackle complex optimization problems, particularly by practitioners and researchersinEngineering,OperationsResearch,andAppliedEconomics.The descriptions of most decomposition techniques are available only in complex and specialized mathematical journals, di?cult to understand by engineers. A book describing a wide range of decomposition techniques, emphasizing problem-solving, and appropriately blending theory and application, was not previously available.