Download or read book Isometric Embeddings of Riemannian and Pseudo Riemannian Manifolds written by Robert Everist Greene and published by American Mathematical Soc.. This book was released on 1970 with total page 69 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Isometric Embedding of Riemannian Manifolds in Euclidean Spaces written by Qing Han and published by American Mathematical Soc.. This book was released on 2006 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: The question of the existence of isometric embeddings of Riemannian manifolds in Euclidean space is already more than a century old. This book presents, in a systematic way, results both local and global and in arbitrary dimension but with a focus on the isometric embedding of surfaces in ${\mathbb R}^3$. The emphasis is on those PDE techniques which are essential to the most important results of the last century. The classic results in this book include the Janet-Cartan Theorem, Nirenberg's solution of the Weyl problem, and Nash's Embedding Theorem, with a simplified proof by Gunther. The book also includes the main results from the past twenty years, both local and global, on the isometric embedding of surfaces in Euclidean 3-space. The work will be indispensable to researchers in the area. Moreover, the authors integrate the results and techniques into a unified whole, providing a good entry point into the area for advanced graduate students or anyone interested in this subject. The authors avoid what is technically complicated. Background knowledge is kept to an essential minimum: a one-semester course in differential geometry and a one-year course in partial differential equations.
Download or read book Pseudo Riemannian Geometry delta invariants and Applications written by Bang-yen Chen and published by World Scientific. This book was released on 2011 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first part of this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian manifolds and their non-degenerate submanifolds, only assuming from the reader some basic knowledge about manifold
Download or read book Introduction to Riemannian Manifolds written by John M. Lee and published by Springer. This book was released on 2019-01-02 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.
Download or read book Differential Geometry Riemannian Geometry written by Robert Everist Greene and published by American Mathematical Soc.. This book was released on 1993 with total page 735 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third of three parts comprising Volume 54, the proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 1990 (ISBN for the set is 0-8218-1493-1). Part 3 begins with an overview by R.E. Greene of some recent trends in Riemannia
Download or read book Differential Geometry and Continuum Mechanics written by Gui-Qiang G. Chen and published by Springer. This book was released on 2015-08-11 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the exciting interface between differential geometry and continuum mechanics, now recognised as being of increasing technological significance. Topics discussed include isometric embeddings in differential geometry and the relation with microstructure in nonlinear elasticity, the use of manifolds in the description of microstructure in continuum mechanics, experimental measurement of microstructure, defects, dislocations, surface energies, and nematic liquid crystals. Compensated compactness in partial differential equations is also treated. The volume is intended for specialists and non-specialists in pure and applied geometry, continuum mechanics, theoretical physics, materials and engineering sciences, and partial differential equations. It will also be of interest to postdoctoral scientists and advanced postgraduate research students. These proceedings include revised written versions of the majority of papers presented by leading experts at the ICMS Edinburgh Workshop on Differential Geometry and Continuum Mechanics held in June 2013. All papers have been peer reviewed.
Download or read book Differential Systems and Isometric Embeddings AM 114 Volume 114 written by Phillip A. Griffiths and published by Princeton University Press. This book was released on 2016-03-02 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of exterior differential systems provides a framework for systematically addressing the typically non-linear, and frequently overdetermined, partial differential equations that arise in differential geometry. Adaptation of the techniques of microlocalization to differential systems have led to recent activity on the foundations of the theory; in particular, the fundamental role of the characteristic variety in geometric problems is now clearly established. In this book the general theory is explained in a relatively quick and concrete manner, and then this general theory is applied to the recent developments in the classical problem of isometric embeddings of Riemannian manifolds.
Download or read book Seminar on Differential Geometry AM 102 Volume 102 written by Shing-tung Yau and published by Princeton University Press. This book was released on 2016-03-02 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of papers constitutes a wide-ranging survey of recent developments in differential geometry and its interactions with other fields, especially partial differential equations and mathematical physics. This area of mathematics was the subject of a special program at the Institute for Advanced Study in Princeton during the academic year 1979-1980; the papers in this volume were contributed by the speakers in the sequence of seminars organized by Shing-Tung Yau for this program. Both survey articles and articles presenting new results are included. The articles on differential geometry and partial differential equations include a general survey article by the editor on the relationship of the two fields and more specialized articles on topics including harmonic mappings, isoperimetric and Poincaré inequalities, metrics with specified curvature properties, the Monge-Arnpere equation, L2 harmonic forms and cohomology, manifolds of positive curvature, isometric embedding, and Kraumlhler manifolds and metrics. The articles on differential geometry and mathematical physics cover such topics as renormalization, instantons, gauge fields and the Yang-Mills equation, nonlinear evolution equations, incompleteness of space-times, black holes, and quantum gravity. A feature of special interest is the inclusion of a list of more than one hundred unsolved research problems compiled by the editor with comments and bibliographical information.
Download or read book Explorations in Complex and Riemannian Geometry written by John Bland and published by American Mathematical Soc.. This book was released on 2003 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains contributions by an impressive list of leading mathematicians. The articles include high-level survey and research papers exploring contemporary issues in geometric analysis, differential geometry, and several complex variables. Many of the articles will provide graduate students with a good entry point into important areas of modern research. The material is intended for researchers and graduate students interested in several complex variables and complex geometry.
Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathematics. It is a translation with updates and editorial comments of the Soviet Mathematical En cyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977 - 1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivision has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathe matics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, engineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
Download or read book An Introduction to Riemannian Geometry written by Leonor Godinho and published by Springer. This book was released on 2014-07-26 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.
Download or read book Foliations on Riemannian Manifolds and Submanifolds written by Vladimir Rovenski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is based on the author's results on the Riemannian ge ometry of foliations with nonnegative mixed curvature and on the geometry of sub manifolds with generators (rulings) in a Riemannian space of nonnegative curvature. The main idea is that such foliated (sub) manifolds can be decom posed when the dimension of the leaves (generators) is large. The methods of investigation are mostly synthetic. The work is divided into two parts, consisting of seven chapters and three appendices. Appendix A was written jointly with V. Toponogov. Part 1 is devoted to the Riemannian geometry of foliations. In the first few sections of Chapter I we give a survey of the basic results on foliated smooth manifolds (Sections 1.1-1.3), and finish in Section 1.4 with a discussion of the key problem of this work: the role of Riemannian curvature in the study of foliations on manifolds and submanifolds.
Download or read book Biharmonic Submanifolds And Biharmonic Maps In Riemannian Geometry written by Ye-lin Ou and published by World Scientific. This book was released on 2020-04-04 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book aims to present a comprehensive survey on biharmonic submanifolds and maps from the viewpoint of Riemannian geometry. It provides some basic knowledge and tools used in the study of the subject as well as an overall picture of the development of the subject with most up-to-date important results.Biharmonic submanifolds are submanifolds whose isometric immersions are biharmonic maps, thus biharmonic submanifolds include minimal submanifolds as a subclass. Biharmonic submanifolds also appeared in the study of finite type submanifolds in Euclidean spaces.Biharmonic maps are maps between Riemannian manifolds that are critical points of the bienergy. They are generalizations of harmonic maps and biharmonic functions which have many important applications and interesting links to many areas of mathematics and theoretical physics.Since 2000, biharmonic submanifolds and maps have become a vibrant research field with a growing number of researchers around the world, with many interesting results have been obtained.This book containing basic knowledge, tools for some fundamental problems and a comprehensive survey on the study of biharmonic submanifolds and maps will be greatly beneficial for graduate students and beginning researchers who want to study the subject, as well as researchers who have already been working in the field.
Download or read book Riemannian Manifolds written by John M. Lee and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.
Download or read book A Journey from Robot to Digital Human written by Edward Y L Gu and published by Springer Science & Business Media. This book was released on 2013-07-24 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a solid set of diversified and essential tools for the theoretical modeling and control of complex robotic systems, as well as for digital human modeling and realistic motion generation. Following a comprehensive introduction to the fundamentals of robotic kinematics, dynamics and control systems design, the author extends robotic modeling procedures and motion algorithms to a much higher-dimensional, larger scale and more sophisticated research area, namely digital human modeling. Most of the methods are illustrated by MATLABTM codes and sample graphical visualizations, offering a unique closed loop between conceptual understanding and visualization. Readers are guided through practicing and creating 3D graphics for robot arms as well as digital human models in MATLABTM, and through driving them for real-time animation. This work is intended to serve as a robotics textbook with an extension to digital human modeling for senior undergraduate and graduate engineering students. At the same time, it represents a comprehensive reference guide for all researchers, scientists and professionals eager to learn the fundamentals of robotic systems as well as the basic methods of digital human modeling and motion generation.
Download or read book Handbook of Differential Geometry Volume 1 written by F.J.E. Dillen and published by Elsevier. This book was released on 1999-12-16 with total page 1067 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the series of volumes which together will constitute the Handbook of Differential Geometry a rather complete survey of the field of differential geometry is given. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent). All chapters are written by experts in the area and contain a large bibliography.
Download or read book Randomness And Realism Encounters With Randomness In The Scientific Search For Physical Reality written by John W Fowler and published by World Scientific. This book was released on 2021-07-08 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Randomness is an active element relevant to all scientific activities. The book explores the way in which randomness suffuses the human experience, starting with everyday chance events, followed by developments into modern probability theory, statistical mechanics, scientific data analysis, quantum mechanics, and quantum gravity. An accessible introduction to these theories is provided as a basis for going into deeper topics.Fowler unveils the influence of randomness in the two pillars of science, measurement and theory. Some emphasis is placed on the need and methods for optimal characterization of uncertainty. An example of the cost of neglecting this is the St. Petersburg Paradox, a theoretical game of chance with an infinite expected payoff value. The role of randomness in quantum mechanics reveals another particularly interesting finding: that in order for the physical universe to function as it does and permit conscious beings within it to enjoy sanity, irreducible randomness is necessary at the quantum level.The book employs a certain level of mathematics to describe physical reality in a more precise way that avoids the tendency of nonmathematical descriptions to be occasionally misleading. Thus, it is most readily digested by young students who have taken at least a class in introductory calculus, or professional scientists and engineers curious about the book's topics as a result of hearing about them in popular media. Readers not inclined to savor equations should be able to skip certain technical sections without losing the general flow of ideas. Still, it is hoped that even readers who usually avoid equations will give those within these pages a chance, as they may be surprised at how potentially foreboding concepts fall into line when one makes a legitimate attempt to follow a succession of mathematical implications.