EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Linking Optical and Chemical Properties of Dissolved Organic Matter in Natural Waters

Download or read book Linking Optical and Chemical Properties of Dissolved Organic Matter in Natural Waters written by Christopher L. Osburn and published by Frontiers Media SA. This book was released on 2017-01-17 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: A substantial increase in the number of studies using the optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) as a proxy for its chemical properties in estuaries and the coastal and open ocean has occurred during the last decade. We are making progress on finding the actual chemical compounds or phenomena responsible for DOM’s optical properties. Ultrahigh resolution mass spectrometry, in particular, has made important progress in making the key connections between optics and chemistry. But serious questions remain and the last major special issue on DOM optics and chemistry occurred nearly 10 years ago. Controversies remain from the non-specific optical properties of DOM that are not linked to discrete sources, and sometimes provide conflicting information. The use of optics, which is relatively easier to employ in synoptic and high resolution sampling to determine chemistry, is a critical connection to make and can lead to major advances in our understanding of organic matter cycling in all aquatic ecosystems. The contentions and controversies raised by our poor understanding of the linkages between optics and chemistry of DOM are bottlenecks that need to be addressed and overcome.

Book The Ethiopian Church

Download or read book The Ethiopian Church written by and published by . This book was released on 197? with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in the Physicochemical Characterization of Dissolved Organic Matter

Download or read book Advances in the Physicochemical Characterization of Dissolved Organic Matter written by Fernando Rosario-Ortiz and published by ACS Symposium. This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of dissolved organic matter (DOM) has fascinated scientists and engineers for at least 60 years - from the initial efforts focused on measuring the concentrations of carbon in marine and aquatic systems, to the discovery of the role of DOM in the formation of disinfection byproducts, all the way to the new emphasis on the detailed understanding of the different functional groups and basic structural features which are the basis for the physicochemical properties of the material. After 50 years of work in the area, there are still many questions regarding DOM. The study of dissolved organic matter (DOM) has fascinated researchers in different fields of science and engineering for many decades. The impact that DOM has on a wide array of environmental processes has resulted in the development of a multidisciplinary community of researchers all focusing on using different analytical techniques and experimental design to better understand DOM. This book offers select case studies focusing on the advanced characterization of DOM in different environments and with respect to different processes. It results from the conclusion of a symposium that E. M. Thurman and I had organized for the 245th meeting of the American Chemical Society, which was held on April 7-11, 2013 in New Orleans, Louisiana.

Book Chemical and Physical Characteristics of Dissolved Organic Matter Isolated from the Mississippi River Delta and Gulf of Mexico

Download or read book Chemical and Physical Characteristics of Dissolved Organic Matter Isolated from the Mississippi River Delta and Gulf of Mexico written by John Graham Rankin and published by . This book was released on 1974 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in the Physicochemical Characterization of Dissolved Organic Matter

Download or read book Advances in the Physicochemical Characterization of Dissolved Organic Matter written by Fernando Rosario-Ortiz and published by . This book was released on 2014 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dissolved Organic Matter in Lacustrine Ecosystems

Download or read book Dissolved Organic Matter in Lacustrine Ecosystems written by K. Salonen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concentrations of dissolved organic matter (DOM) in lakes are often an order of magnitude greater than concentrations of particulate organic matter; nevertheless, the biogeochemical analysis of DOM is described in only a few textbooks on limnology (most thoroughly by Wetzel). The orgins of dissolved organic substances are largely photosynthetic; DOM is either autochthonously synthesized by littoral and pelagic flora through secretions and autolysis of cellular contents, or allochthonously generated in terrestrial systems of the drainage basin, composing largely of humic substances refractory to rapid microbial degradation. The role of DOM in lacustrine ecosystems, as energy source and system regulator, however, is still poorly known. The aim of this book is: (1) to present state-of-the-art reviews of the role of dissolved autochthonous and allochthonous organic matter in pelagial and littoral zones; and (2) to focus attention on poorly understood but critical topics and hence to provide direction for future research activity.

Book Natural Organic Matter in Water

Download or read book Natural Organic Matter in Water written by Mika Sillanpaa and published by Butterworth-Heinemann. This book was released on 2022-10-17 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural Organic Matter in Water: Characterization, Treatment Methods, and Climate Change Impact, Second Edition focuses on advanced filtration and treatment options, as well as processes for reducing disinfection by-products, making it an essential resource on the latest breakthroughs in the characterization, treatment and removal of natural organic matter (NOM) from drinking water. Based on the editor’s years of research and field experience, the book covers general parameters, isolation and concentration, fractionation, composition and structural analysis, and biological testing, along with removal methods such as inorganic coagulants, polyelectrolytes and composite coagulants. In addition, sections cover electrochemical and membranes removal methods such as electrocoagulation, electrochemical oxidation, microfiltration and ultrafiltration, nanofiltration, and membrane fouling. This book is a valuable guide for engineers and researchers looking to integrate methods, processes and technologies to achieve desired affects. Provides a summary of up-to-date information surrounding NOM Presents enhanced knowledge on treatment strategies for the removal of NOM Covers conventional as well as advanced NOM removal methods

Book Molecular and Optical Characterization of Dissolved Organic Matter in the Central Arctic Ocean

Download or read book Molecular and Optical Characterization of Dissolved Organic Matter in the Central Arctic Ocean written by Xianyu Kong and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dissolved organic matter (DOM) in the ocean is a complex mixture of molecules derived from autochthonous (marine) or allochthonous (terrestrial) origins. DOM plays an important role in marine biogeochemical cycles by attenuating light available for primary production, serving as an energy and nutrient source for heterotrophic communities, regulating the ultraviolet and visible light absorption, undergoing photochemical processing, and acting as a trace metal ligand. DOM in the Central Arctic Ocean (CAO) is influenced by increased freshwater input and associated terrestrial materials in recent decades due to rapid climate change. The quantification of DOM sources (terrestrial versus marine) in the water column of the CAO is not well constrained. Few studies have systematically investigated the seasonality and spatial variability of DOM by combining optical and molecular-level analytical techniques in the CAO, especially during winter. State of the art chemical characterization of DOM is subject to major challenges: Solid phase extraction (SPE) that is often used to desalt and pre-concentrate marine DOM introduces chemical fractionation effects, which limits the comparability between analytical results for original samples and those carried out for SPE-DOM. There is no specific method to quantify fractionation effects, nor specific guidelines to avoid fractionation. Using mass spectrometry, quantitative DOM analyses is challenged by selective ionization of molecules and the large number of unresolved structural isomers that prevent classical external calibration. In the first part of this thesis, a method was developed to quantitatively track optical or chemical fractionation during SPE and investigate the potential mechanisms. We found a decrease in extraction efficiency of dissolved organic carbon (DOC), fluorescence and absorbance, and polar organic substances with increasing carbon loading on the SPE column. As the surface loading of the solid-phase increased, the dominant extraction mechanism shifted from PPL physisorption to increased DOM self-assembly, resulting in optical and chemical fractionation. The relative DOC loading (DOCload) was used to assess the carbon loading during SPE, and a double sigmoid model was applied to our online permeate fluorescence data as a function of DOCload, which allowed us to assess the degree of variability induced by DOCload. This finding has ample implications for the future processing and previous interpretation of chemical characteristics in SPE-DOM of aquatic organic matter. For the second part of the thesis, original water samples were acquired from the “Multidisciplinary Drifting Observatory for the Study of Arctic Climate” (MOSAiC) expedition. The water column samples covered a full year (2019 / 2020) and included the regions Amundsen Basin, western Nansen Basin and Yermak Plateau and Fram Strait. Samples were analyzed using optical spectroscopy to determine chromophoric DOM (CDOM) and fluorescent DOM (FDOM). In addition, a new method was applied that used Fourier transform ion cyclotron resonance mass spectrometry hyphenated to high performance liquid chromatography (LC-FTMS). The method allowed DOM analysis in original filtered water and thus avoided the chemical fractionation introduced by SPE. During the MOSAiC expedition, DOC concentrations and CDOM characteristics in the water column were primarily influenced by regional differences. These differences were largely dependent on terrestrially-derived DOM (tDOM) input by the transpolar drift (TPD) as indicative of average 136% and 45% higher aCDOM(350) and DOC concentration, respectively, in the Amundsen compared to the western Nansen Basin and Yermak Plateau, and slightly modified by seasonal changes. Despite the convenient identification of tDOM, optical spectroscopy was not suitable to quantify the contribution of tDOM to bulk DOC or to track sea ice derived DOM in the water column. In contrast, using LC-FTMS, we found quantitative linear correlation between the summed mass peak magnitudes for each sample (intsum) and DOC concentration. By combing LC-FTMS and source identification with optical parameters, we were able to quantify DOM sources (terrestrial versus marine) in the water column: 83% of the summed peak magnitude of all samples could be related to marine or terrestrial sources. tDOM contributed ∼17% (or 8 μmol kg-1) to deep DOC (~2000 m) in the CAO and was more refractory and had a higher state of unsaturation compared to marine DOM. The quantitative characterization of DOM in original seawater from different origin is a major step in the field of research. It provides a unique and new insight into the molecular changes in marine DOM composition and an improved understanding of the terrestrial DOM distribution in the CAO.

Book Chemical Characterization of Refractory Dissolved Organic Matter

Download or read book Chemical Characterization of Refractory Dissolved Organic Matter written by Neal Ken Arakawa and published by . This book was released on 2016 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary objective of this thesis was to combine a chemical degradation technique together with an analytical framework centered primarily around gas chromatography (GC) to more fully interrogate the composition of aquatic dissolved organic matter (DOM). Previous studies had suggested that aliphatic compounds could represent a significant fraction of refractory organic matter isolated by solid phase extraction (SPE). These studies had also uncovered the vast complexity of DOM. Gas chromatography coupled to mass spectrometry provides superior separation capability and is ideal for examining complex mixtures of lipid-derived molecules. As such I sought to develop a comprehensive GC analysis methods to provide molecular level information for DOM isolated by solid phase extraction (SPE) onto a hydrophobic resin- PPL (Agilent Bond Elut). In Chapter II, a comprehensive chemical reduction procedure was developed and first applied to the environmental DOM standard Suwannee River Fulvic Acid (SRFA) as a proxy for marine DOM. The resulting hydrocarbons were amenable to comprehensive gas chromatography time-of-flight mass spectrometry (GCxGC-TOF-MS), and effectively resolved into multiple series of alicyclic, unsaturated compounds. This was the first direct demonstration of the isomeric complexity of aquatic DOM. Similar alicyclic compounds were recovered from the reduction of terrestrial source material, implicating resin acids and sterols as potential precursors of SRFA. In Chapter III the reduction process was applied to marine surface DOM from the Scripps Institution of Oceanography Pier, and similar alicylic compounds were found. The GCxGC-TOF-MS identified carbon backbones closely resembling carotenoids, implicating these ubiquitous and highly reactive biomolecules as the source of a significant fraction of DOM accumulating in the marine water column. The structural assignment was supported by the identification of carotenoid derived resonances in two dimensional nuclear magnetic resonance (NMR) spectra, which indicated that these molecules were highly oxidized compared to the parent molecules consistent with their present in DOM. Following up on this work in Chapter IV the carotenoid [beta]-carotene was irradiated with natural sunlight to test the hypothesis that photodegradation was one pathway that converted carotenoids into water-soluble degradation products. The first finding was that the reaction produced a series of compounds identical to compounds isolated from marine DOM. The second important result was that the reaction produced a complex mixture of isomers from a single compound that helps to at least partly explain the compositional diversity in marine DOM. Together, the data in Chapters III and IV allowed us to link a large fraction of DOM to a ubiquitous biomolecule that can now serve as a model for studies examining the formation and fate of DOM that accumulates in the ocean on long timescales. Finally, in Chapter V we sought to examine how the composition of DOM -- both the complex alicyclic fraction and small, polar biomolecules, which are considered a "fresher" signal of biological input -- evolved across a salinity gradient. Although core biochemical classes were present in all regions the data supported in situ production of compositionally similar material rather than mixing across the gradients as proposed in some studies. Together, the chapters in my thesis provide new insight in the composition of dissolved organic matter in marine and terrestrial environments. The thesis also represents the most comprehensive molecular level characterization of DOM isolated by this solid phase extraction method, which is the most commonly used isolation method in the field. My findings also provide an important foundation for future lab-based mechanistic studies of DOM cycling in the marine environment.

Book Natural Organic Matter in Water

Download or read book Natural Organic Matter in Water written by Mika Silanpää and published by Butterworth-Heinemann. This book was released on 2014-10-07 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approximately 77 percent of the freshwater used in the United States comes from surface-water sources and is subject to natural organic matter contamination according to the United States Geological Survey. This presents a distinct challenge to water treatment engineers. An essential resource to the latest breakthroughs in the characterization, treatment and removal of natural organic matter (NOM) from drinking water, Natural Organic Matter in Waters: Characterization and Treatment Methods focuses on advance filtration and treatment options, and processes for reducing disinfection byproducts. Based on the author’s years of research and field experience, this book begins with the characterization of NOM including: general parameters, isolation and concentration, fractionation, composition and structural analysis and biological testing. This is followed by removal methods such as inorganic coagulants, polyelectrolytes and composite coagulants. Electrochemical and membranes removal methods such as: electrocoagulation, electrochemical oxidation, microfiltration and ultrafiltration, nanofiltration and membrane fouling. Covers conventional as well as advanced NOM removal methods Includes characterization methods of NOM Explains removal methods such as: removal by coagulation, electrochemical, advanced oxidation, and integrated methods