EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Irradiation Programs and Test Plans to Assess High Fluence Irradiation Assisted Stress Corrosion Cracking Susceptibility

Download or read book Irradiation Programs and Test Plans to Assess High Fluence Irradiation Assisted Stress Corrosion Cracking Susceptibility written by and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: . Irradiation assisted stress corrosion cracking (IASCC) is a known issue in current reactors. In a 60 year lifetime, reactor core internals may experience fluence levels up to 15 dpa for boiling water reactors (BWR) and 100+ dpa for pressurized water reactors (PWR). To support a safe operation of our fleet of reactors and maintain their economic viability it is important to be able to predict any evolution of material behaviors as reactors age and therefore fluence accumulated by reactor core component increases. For PWR reactors, the difficulty to predict high fluence behavior comes from the fact that there is not a consensus of the mechanism of IASCC and that little data is available. It is however possible to use the current state of knowledge on the evolution of irradiated microstructure and on the processes that influences IASCC to emit hypotheses. This report identifies several potential changes in microstructure and proposes to identify their potential impact of IASCC. The susceptibility of a component to high fluence IASCC is considered to not only depends on the intrinsic IASCC susceptibility of the component due to radiation effects on the material but to also be related to the evolution of the loading history of the material and interaction with the environment as total fluence increases. Single variation type experiments are proposed to be performed with materials that are representative of PWR condition and with materials irradiated in other conditions. To address the lack of IASCC propagation and initiation data generated with material irradiated in PWR condition, it is proposed to investigate the effect of spectrum and flux rate on the evolution of microstructure. A long term irradiation, aimed to generate a well-controlled irradiation history on a set on selected materials is also proposed for consideration. For BWR, the study of available data permitted to identify an area of concern for long term performance of component. The efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. The use of existing, available, materials and the generation of additional materials via irradiation in a research reactor are considered.

Book Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms

Download or read book Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today s nuclear power reactor fleet and affects critical structural components within the reactor core. The effects of increased exposure to irradiation, stress, and/or coolant can substantially increase susceptibility to stress-corrosion cracking of austenitic steels in high-temperature water environments. . Despite 30 years of experience, the underlying mechanisms of IASCC are unknown. Extended service conditions will increase the exposure to irradiation, stress, and corrosive environment for all core internal components. The objective of this effort within the Light Water Reactor Sustainability program is to evaluate the response and mechanisms of IASCC in austenitic stainless steels with single variable experiments. A series of high-value irradiated specimens has been acquired from the past international research programs, providing a valuable opportunity to examine the mechanisms of IASCC. This batch of irradiated specimens has been received and inventoried. In addition, visual examination and sample cleaning has been completed. Microhardness testing has been performed on these specimens. All samples show evidence of hardening, as expected, although the degree of hardening has saturated and no trend with dose is observed. Further, the change in hardening can be converted to changes in mechanical properties. The calculated yield stress is consistent with previous data from light water reactor conditions. In addition, some evidence of changes in deformation mode was identified via examination of the microhardness indents. This analysis may provide further insights into the deformation mode under larger scale tests. Finally, swelling analysis was performed using immersion density methods. Most alloys showed some evidence of swelling, consistent with the expected trends for this class of alloy. The Hf-doped alloy showed densification rather than swelling. This observation may be related to the formation of second-phases under irradiation, although further examination is required.

Book Understanding Susceptibility of In core Components to Irradiation assisted Stress Corrosion Cracking

Download or read book Understanding Susceptibility of In core Components to Irradiation assisted Stress Corrosion Cracking written by and published by . This book was released on 1991 with total page 9 pages. Available in PDF, EPUB and Kindle. Book excerpt: As nuclear plants age and accumulated fluences of core structural components increase, susceptibility of the components to irradiation-assisted stress corrosion cracking (IASCC) is also expected to increase. Irradiation-induced sensitization, commonly associated with an IASCC failure, was investigated in this study to provide a better understanding of long-term structural integrity of safety-significant in-core components. Irradiation-induced sensitization of high- and commercial-purity Type 304 stainless steels irradiated in BWRs was analyzed. 7 refs., 8 figs.

Book Irradiation assisted Stress Corrosion Cracking Considerations at Temperatures Below 288  C

Download or read book Irradiation assisted Stress Corrosion Cracking Considerations at Temperatures Below 288 C written by and published by . This book was released on 1995 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: Irradiation-assisted stress corrosion cracking (IASCC) occurs above a critical neutron fluence in light-water reactor (LWR) water environments at 288 C, but very little information exists to indicate susceptibility as temperatures are reduced. Potential low-temperature behavior is assessed based on the temperature dependencies of intergranular (IG) SCC in the absence of irradiation, radiation-induced segregation (RIS) at grain boundaries and micromechanical deformation mechanisms. IGSCC of sensitized SS in the absence of irradiation exhibits high growth rates at temperatures down to 200 C under conditions of anodic dissolution control, while analysis of hydrogen-induced cracking suggests a peak crack growth rate near 100 C. Hence from environmental considerations, IASCC susceptibility appears to remain likely as water temperatures are decreased. Irradiation experiments and model predictions indicate that RIS also persists to low temperatures. Chromium depletion may be significant at temperatures below 100C for irradiation doses greater than 10 displacements per atom (dpa). Macromechanical effects of irradiation on strength and ductility are not strongly dependent on temperature below 288 C. However, temperature does significantly affect radiation effects on SS microstructure and micromechanical deformation mechanisms. The critical conditions for material susceptibility to IASCC at low temperatures may be controlled by radiation-induced grain boundary microchemistry, strain localization due to irradiation microstructure and irradiation creep processes. 39 refs.

Book Irradiation Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

Download or read book Irradiation Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments written by and published by . This book was released on 2010 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (≤3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC. The effect of neutron irradiation on the fracture toughness of austenitic SSs was also evaluated at dose levels relevant to BWR internals.

Book Energy and Water Development Appropriations for 2018

Download or read book Energy and Water Development Appropriations for 2018 written by United States. Congress. House. Committee on Appropriations. Subcommittee on Energy and Water Development and published by . This book was released on 2017 with total page 1612 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Radiation Hardening and Radiation induced Chromium Depletion Effects on Intergranular Stress Corrosion Cracking of Austenitic Stainless Steels

Download or read book Radiation Hardening and Radiation induced Chromium Depletion Effects on Intergranular Stress Corrosion Cracking of Austenitic Stainless Steels written by and published by . This book was released on 1993 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: Available data on neutron-irradiated materials have been analyzed and correlations developed between fluence, yield strength, grain boundary chromium concentration and cracking susceptibility in high-temperature water environments. Large heat-to-heat differences in critical fluence (0.2 to 2.5 n/cm[sup 2]) for IGSCC are documented. In many cases, this variability is consistent with yield strength differences among irradiated materials. IGSCC correlated better to yield strength than to fluence for most heats suggesting a possible role of the radiation-induced hardening (and microstructure) on cracking. However, isolatedheats reveal a wide range of yield strengths from 450 to 800 MPa necessary to promote IGSCC which cannot be understood by strength effects alone. Grain boundary Cr depletion explain differences in IGSCC susceptibility for irradiated stainless steels. Cr contents versus SCC shows that all materials showing IG cracking have some grain boundary depletion ([ge]2%). Grain boundary Cr concentrations for cracking (below [approximately]16 wt %) are in good agreement with similar SCC tests on unirradiated 304 SS with controlled depletion profiles. Heats that prompt variability in the yield strength correlation, are accounted for bydifferences in their interfacial Cr contents. Certain stainless steels are more resistant to cracking even though they have significant radiation-induced Cr depletion. It is proposed that Cr depletion is required for IASCC, but observed susceptibility is modified by other microchemical and microstructural components.

Book Tensile Stress Corrosion Cracking of Type 304 Stainless Steel Irradiated to Very High Dose

Download or read book Tensile Stress Corrosion Cracking of Type 304 Stainless Steel Irradiated to Very High Dose written by and published by . This book was released on 2001 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: Certain safety-related core internal structural components of light water reactors, usually fabricated from Type 304 or 316 austenitic stainless steels (SSs), accumulate very high levels of irradiation damage (20--100 displacement per atom or dpa) by the end of life. The data bases and mechanistic understanding of, the degradation of such highly irradiated components, however, are not well established. A key question is the nature of irradiation-assisted intergranular cracking at very high dose, i.e., is it purely mechanical failure or is it stress-commotion cracking? In this work, hot-cell tests and microstructural characterization were performed on Type 304 SS from the hexagonal fuel can of the decommissioned EBR-11 reactor after irradiation to (approximately)50 dpa at (approximately)370 C. Slow-strain-rate tensile tests were conducted at 289 C in air and in water at several levels of electrochemical potential (ECP), and microstructural characteristics were analyzed by scanning and transmission electron microcopies. The material deformed significantly by twinning and exhibited surprisingly high ductility in air, but was susceptible to severe intergranular stress corrosion cracking (IGSCC) at high ECP. Low levels of dissolved O and ECP were effective in suppressing the susceptibility of the heavily irradiated material to IGSCC, indicating that the stress corrosion process associated with irradiation-induced grain-boundary Cr depletion, rather than purely mechanical separation of grain boundaries, plays the dominant role. However, although IGSCC was suppressed, the material was susceptible to dislocation channeling at low ECP, and this susceptibility led to poor work-hardening capability and low ductility.

Book Fundamentals of Radiation Materials Science

Download or read book Fundamentals of Radiation Materials Science written by GARY S. WAS and published by Springer. This book was released on 2016-07-08 with total page 1014 pages. Available in PDF, EPUB and Kindle. Book excerpt: The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.

Book Energy Research Abstracts

Download or read book Energy Research Abstracts written by and published by . This book was released on 1992-10 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 1028 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Book Design of an Experimental Facility for Irradiation Assisted Stress Corrosion Cracking Studies

Download or read book Design of an Experimental Facility for Irradiation Assisted Stress Corrosion Cracking Studies written by Julio Andres Vergara and published by . This book was released on 1992 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Irradiation assisted Stress Corrosion Cracking of Fusion Reactor Material

Download or read book Irradiation assisted Stress Corrosion Cracking of Fusion Reactor Material written by and published by . This book was released on 1990 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: Irradiation-assisted stress-corrosion cracking (IASCC) is a phenomenon produced by radiation-induced alterations in the material and environment. These alternations include radiation-induced segregation and depletion of specific elements at grain boundaries, radiation creep and hardening and radiolytic effects induced in the aqueous environment. This phenomenon has been clearly identified as an active crack growth mechanism for in-core components in fission reactor must be considered as a potential crack growth mechanism for water-cooled fusion reactors such as ITER or power reactors. The potential for IASCC phenomenon occurring in ITER structural materials is being evaluated by modeling and experiment. Results from modeling calculations for impurity segregation at ITER-relevant temperatures have been completed and suggest that this phenomenon is not likely to induce IASCC during the ITER design life. If a fusion power reactor is water cooled, IASCC is a definite concern for austenitic stainless steels. It has been clearly demonstrated with modeling and experimental measurements that Cr depletion occurs within about 1 dpa. Phosphorus and Si grain boundary segregation can also occur at this same dose and temperature but their effect on IASCC appears to be secondary to Cr depletion. Also, irradiation creep-induced crack tip strain appears to be a secondary effect. However, there are a number of unexplained observations in the literature on IASCC which may be caused by radiation damage effects other than Cr depletion or impurity segregation.

Book IRRADIATION ASSISTED STRESS CORROSION CRACKING OF MODEL AUSTENITIC STAINLESS STEELS IRRADIATED IN THE HALDEN REACTOR    NUREG CR 5608    U S  NUCLEAR REGULATORY Commission

Download or read book IRRADIATION ASSISTED STRESS CORROSION CRACKING OF MODEL AUSTENITIC STAINLESS STEELS IRRADIATED IN THE HALDEN REACTOR NUREG CR 5608 U S NUCLEAR REGULATORY Commission written by U.S. Nuclear Regulatory Commission and published by . This book was released on 1999* with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Studies on the Mechanism for Irradiation Assisted Stress Corrosion Cracking

Download or read book Studies on the Mechanism for Irradiation Assisted Stress Corrosion Cracking written by Kjell Pettersson and published by . This book was released on 1994 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: