EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Electrolytes for Lithium and Lithium Ion Batteries

Download or read book Electrolytes for Lithium and Lithium Ion Batteries written by T. Richard Jow and published by Springer. This book was released on 2016-09-03 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrolytes for Lithium and Lithium-ion Batteries provides a comprehensive overview of the scientific understanding and technological development of electrolyte materials in the last several years. This book covers key electrolytes such as LiPF6 salt in mixed-carbonate solvents with additives for the state-of-the-art Li-ion batteries as well as new electrolyte materials developed recently that lay the foundation for future advances. This book also reviews the characterization of electrolyte materials for their transport properties, structures, phase relationships, stabilities, and impurities. The book discusses in-depth the electrode-electrolyte interactions and interphasial chemistries that are key for the successful use of the electrolyte in practical devices. The Quantum Mechanical and Molecular Dynamical calculations that has proved to be so powerful in understanding and predicating behavior and properties of materials is also reviewed in this book. Electrolytes for Lithium and Lithium-ion Batteries is ideal for electrochemists, engineers, researchers interested in energy science and technology, material scientists, and physicists working on energy.

Book Polymerized Ionic Liquids

    Book Details:
  • Author : Ali Eftekhari
  • Publisher : Royal Society of Chemistry
  • Release : 2017-09-18
  • ISBN : 1782629602
  • Pages : 564 pages

Download or read book Polymerized Ionic Liquids written by Ali Eftekhari and published by Royal Society of Chemistry. This book was released on 2017-09-18 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series covers the fundamentals and applications of different smart material systems from renowned international experts.

Book Non Aqueous Electrolytes for Lithium Batteries

Download or read book Non Aqueous Electrolytes for Lithium Batteries written by T. R. Jow and published by The Electrochemical Society. This book was released on 2009-05 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The electrolyte plays a vital role for the performance of rechargeable lithium batteries with a Li metal anode as well as Li-ion batteries. A better understanding of the elementary processes involved in the formation of the electrolyte/electrode interface and charge transfer kinetics in relation to solvent, salt, additive, and electrode material is crucial to the further optimization of Li and Li-ion batteries. This issue will focus on both the fundamental and applied aspects of the electrolyte for Li and Li-ion batteries. Topics include theoretical and experimental studies of structure/property relationships of electrolytes; development of new salts, solvents and additives; development of electrolytes for 5 V Li and Li-ion batteries; studies and approaches leading to the understanding of electrode/electrolyte interfacial phenomena and the charge transfer processes; electrolytes with enhanced non-flammability; electrolytes for wide temperature range operations; and cell performance improvement with respect to that of electrolyte materials.

Book Ionic Liquid Based Electrolytes for High temperature Lithium ion Batteries

Download or read book Ionic Liquid Based Electrolytes for High temperature Lithium ion Batteries written by and published by . This book was released on 2015 with total page 37 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Inorganic Massive Batteries

Download or read book Inorganic Massive Batteries written by Virginie Viallet and published by John Wiley & Sons. This book was released on 2018-03-15 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the 90s, the Li-ion batteries are the most commonly used energy storage systems. The demand for performance and safety is constantly growing, current commercial batteries based liquid electrolytes or gels may not be able to meet the needs of emerging applications such as for electric and hybrid vehicles and renewable energy storage , and it is therefore necessary to develop advanced storage systems with characteristics such that the highest density of energy technology, long life, low cost of production, little or no maintenance and high safety of use. Batteries "all solid" are a technology of choice to meet these requirements. In this technology, the electrolyte separator between the two electrodes is no longer a liquid medium but a solid.

Book Designing Electrolytes for Lithium Ion and Post Lithium Batteries

Download or read book Designing Electrolytes for Lithium Ion and Post Lithium Batteries written by Władysław Wieczorek and published by CRC Press. This book was released on 2021-06-23 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every electrochemical source of electric current is composed of two electrodes with an electrolyte in between. Since storage capacity depends predominantly on the composition and design of the electrodes, most research and development efforts have been focused on them. Considerably less attention has been paid to the electrolyte, a battery’s basic component. This book fills this gap and shines more light on the role of electrolytes in modern batteries. Today, limitations in lithium-ion batteries result from non-optimal properties of commercial electrolytes as well as scientific and engineering challenges related to novel electrolytes for improved lithium-ion as well as future post-lithium batteries.

Book Electrolytes  Interfaces and Interphases

Download or read book Electrolytes Interfaces and Interphases written by Kang Xu and published by Royal Society of Chemistry. This book was released on 2023-04-12 with total page 841 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authoritative textbook for those who want to enter the field of electrochemical energy storage research.

Book Ceramic and Specialty Electrolytes for Energy Storage Devices

Download or read book Ceramic and Specialty Electrolytes for Energy Storage Devices written by Prasanth Raghavan and published by CRC Press. This book was released on 2021-04-04 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ceramic and Specialty Electrolytes for Energy Storage Devices, Volume II, investigates recent progress and challenges in a wide range of ceramic solid and quasi-solid electrolytes and specialty electrolytes for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: • Offers a detailed outlook on the performance requirements and ion transportation mechanism in solid polymer electrolytes • Covers solid-state electrolytes based on oxides (perovskite, anti-perovskite) and sulfide-type ion conductor electrolytes for lithium-ion batteries followed by solid-state electrolytes based on NASICON and garnet-type ionic conductors • Discusses electrolytes employed for high-temperature lithium-ion batteries, low-temperature lithium-ion batteries, and magnesium-ion batteries • Describes sodium-ion batteries, transparent electrolytes for energy storage devices, non-platinum-based cathode electrocatalyst for direct methanol fuel cells, non-platinum-based anode electrocatalyst for direct methanol fuel cells, and ionic liquid-based electrolytes for supercapacitor applications • Suitable for readers with experience in batteries as well as newcomers to the field This book will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials and chemical engineers, as well as those involved in related disciplines.

Book SYNTHESIS AND CHARACTERIZATION OF HYBRID ELECTROLYTES WITH TETHERED IONIC LIQUID FOR LITHIUM ION BATTERIES

Download or read book SYNTHESIS AND CHARACTERIZATION OF HYBRID ELECTROLYTES WITH TETHERED IONIC LIQUID FOR LITHIUM ION BATTERIES written by Guang Yang and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Rechargeable lithium ion batteries are revolutionary energy storage systems widely used in portable electronic devices (e.g., mobile phones, laptops) and more recently electrical vehicles. The conventional liquid electrolytes in the lithium ion battery brought about safety problems such as fire and explosion. Related safety accidents (e.g., cell phone explosion, laptop fire, plane smoldering, etc.) have been reported many times. This also eliminates the possibility of using lithium metal as anode material which has much higher theoretical specific capacity in comparison with commercial graphite electrode because of the growth of uncontrolled lithium dendrites can lead to short circuit and other serious accidents. Solid polymer electrolytes have many advantages over conventional liquid electrolytes. They are light-weighted, non-volatile and have much better safety features than liquid electrolyte. Meanwhile, they are also better than the ceramic electrolyte in terms of their excellent flexibility and processability. Currently, low ionic conductivity of solid polymer electrolytes (e.g., polyethylene oxide (PEO)) at ambient temperature still hinders their practical application. Ionic liquids (ILs) are non-flammable and have negligible volatility. Its ionic conductive nature, excellent chemical stability, and good electrochemical stability enable them to be regarded as useful components for next generation battery electrolytes. In this thesis work, focus will be placed on synthesis and characterization of ionic liquid tethered organic/inorganic hybrid polymer electrolyte with high room temperature ionic conductivity. Moreover, their electrochemical properties and prototype battery performances were also looked into. The use of highly conductive solid-state electrolytes to replace conventional liquid organic electrolytes enables radical improvements in reliability, safety and performance of lithium batteries. Here in chapter 2, we report the synthesis and characterization of a new class of nonflammable solid electrolytes based on the grafting of ionic liquids onto octa-silsesquioxane. The electrolyte exhibits outstanding room-temperature ionic conductivity (~4.8 10-4 S/cm), excellent electrochemical stability (up to 5 V relative to Li+/Li) and high thermal stability. All-solid-state Li metal batteries using the prepared electrolyte membrane are successfully cycled with high coulombic efficiencies at ambient temperature. Good cycling stability of the electrolyte against lithium has been demonstrated. This work provides a new platform of solid polymer electrolyte for the application of room-temperature lithium batteries. In chapter 3, an organic-inorganic hybrid solid electrolyte with ionic liquid moieties tethered onto dumbbell-shaped octasilsesquioxanes through oligo(ethylene glycol) spacers was synthesized. The hybrid electrolyte is featured by its high room-temperature ionic conductivity (1.210-4 S/cm at 20 oC with LiTFSI salt), excellent electrochemical stability (4.6 V vs Li+/Li), and great thermal stability. Excellent capability of the hybrid electrolyte to mediate electrochemical deposition and dissolution of lithium has been demonstrated in the symmetrical lithium cells. No short circuit has been observed after more than 500 hrs in the polarization tests. Decent charge/discharge performance has been obtained in the prepared electrolyte based all-solid-state lithium battery cells at ambient temperature. In chapter 4, hybrid polymer electrolyte network (XPOSS-IL) synthesized by crosslinking the individual dendritic POSS-IL was investigated. To be specific, after grafting mono-broninated hexaethylene glycol to the POSS cage, 1-vinyl imidazole was adopted for the subsequent quarternization reaction. Then the chain end double bonds underwent free radical crosslinking process to produce XPOSS-IL. The ionic conductivity of LiTFSI dissolved XPOSS-IL is 5.4 10-5 S/cm at 30 . By adding a small fraction of ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITFSI), the ionic conductivity increases to 1.4 10-4 S/cm at room temperature. It is also found that EMITFSI will enhance the anodic stability of XPOSS-IL. The Li/LTO and Li/LFP cell assembled with X-POSS-IL-LiTFSI/EMITFSI demonstrates capability of delivering high specific capacities at room temperature and elevated temperature.

Book Rechargeable Battery Electrolytes

Download or read book Rechargeable Battery Electrolytes written by Jianmin Ma and published by Royal Society of Chemistry. This book was released on 2024-02-26 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rechargeable batteries are one of the crucial ways we are going to solve the sustainable energy crisis. Lithium-ion batteries have been commercialised and are heavily relied upon, however, the scarcity of lithium resources increases the production cost and hinders further application. Additionally, the toxic and flammable electrolyte brings many potential safety hazards including environmental pollution. Looking for low-cost, safe, and environmentally friendly alternatives to LIBs has become a valuable research direction. The modification of batteries is focused on the anode, the cathode and electrolyte. Globally, researchers have moved onto new rechargeable batteries based on multivalent metal ions which have been extensively studied, including K+, Ca2+, Mg2+ and Al3+. However, the electrolyte is a very important component of a battery as its physical and chemical properties directly affect the electrochemical performance and energy storage mechanism. Finding and selecting an appropriate electrolyte system is a crucial factor that must be taken into account to make these post-lithium-ion batteries commercially viable. Until now, it has been challenging to develop a suitable electrolyte with a wide electrochemical stability window and stable anode interface. This book covers all the major ion-battery groups and their electrolytes, examining their performance and suitability in different solvents: aqueous, non-aqueous, solid gel and polymer. It is suitable for all levels of students and researchers who want to understand the fundamentals and future challenges of developing electrolytes.

Book Ceramic Electrolytes For All solid state Li Batteries

Download or read book Ceramic Electrolytes For All solid state Li Batteries written by Masashi Kotobuki and published by World Scientific. This book was released on 2018-06-04 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: All-solid-state batteries have gained much attention as the next-generation batteries. This book is about various Li ion ceramic electrolytes and their applications to all-solid-state battery. It contains a wide range of topics from history of ceramic electrolytes and ion conduction mechanisms to recent research achievements. Here oxide-type and sulfide-type ceramic electrolytes are described in detail. Additionally, their applications to all-solid-state batteries, including Li-air battery and Li-S battery, are reviewed.Consisting of fundamentals and advanced technology, this book would be suitable for beginners in the research of ceramic electrolytes; it can also be used by scientists and research engineers for more advanced development.

Book Pure  Hybrid and Polymerized Ionic Liquid Based Electrolytes

Download or read book Pure Hybrid and Polymerized Ionic Liquid Based Electrolytes written by Manfred Kerner and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Theoretical Insights into the Electrochemical Properties of Ionic Liquid Electrolytes in Lithium Ion Batteries

Download or read book Theoretical Insights into the Electrochemical Properties of Ionic Liquid Electrolytes in Lithium Ion Batteries written by Leila Maftoon-Azad and published by CRC Press. This book was released on 2024-09-17 with total page 75 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a concise overview of the use of ionic liquids as electrolytes in lithium-ion batteries (LIBs) from a theoretical and computational perspective. It focuses on computational studies to understand the behavior of lithium ions in different ionic liquids and to optimize the performance of ionic liquid-based electrolytes. The main features of the book are as follows: • Provides a thorough understanding of the theoretical and computational aspects of using ionic liquids as electrolytes in LIBs, including the evaluation and reproducibility of the theoretical paths. • Covers various computational methods such as density functional theory, molecular dynamics, and quantum mechanics that have been used to study the behavior of lithium ions in different solvents and to optimize the performance of ionic liquid-based electrolytes. • Discusses recent advances such as new computational methods for predicting the properties of ionic liquid-based electrolytes, new strategies for improving the stability and conductivity of these electrolytes, and new approaches for understanding the kinetics and thermodynamics of redox reactions with ionic liquids. • Suggests how theoretical insights can be translated into practical applications for improving performance and safety. This monograph will be of interest to engineers working on LIB optimization.

Book Atomistic Modeling of Ionic Liquid Based Electrolytes for Lithium Batteries

Download or read book Atomistic Modeling of Ionic Liquid Based Electrolytes for Lithium Batteries written by Anirudh Deshpande and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ionic Liquids  Science and Applications

Download or read book Ionic Liquids Science and Applications written by Ann E. Visser and published by OUP USA. This book was released on 2013-03-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains some of the papers presented at the ACS meeting symposium Ionic Liquids: Science and Applications, held at the 243rd National ACS meeting.

Book Fast Ion Transport in Solids

    Book Details:
  • Author : B. Scrosati
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 9401119163
  • Pages : 375 pages

Download or read book Fast Ion Transport in Solids written by B. Scrosati and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main motivation for the organization of the Advanced Research Workshop in Belgirate was the promotion of discussions on the most recent issues and the future perspectives in the field of Solid State lonics. The location was chosen on purpose since Belgirate was the place were twenty years ago, also then under the sponsorship of NATO, the very first international meeting on this important and interdisciplinary field took place. That meeting was named "Fast Ion Transport in Solids" and gathered virtually everybody at that time having been active in any aspect of motion of ions in solids. The original Belgirate Meeting made for the first time visible the technological potential related to the phenomenon of the fast ionic transport in solids and, accordingly, the field was given the name "Solid State lonics". This field is now expanded to cover a wide range of technologies which includes chemical sensors for environmental and process control, electrochromic windows, mirrors and displays, fuel cells, high performance rechargeable batteries for stationary applications and electrotraction, chemotronics, semiconductor ionics, water electrolysis cells for hydrogen economy and other applications. The main idea for holding an anniversary meeting was that of discussing the most recent issues and the future perspectives of Solid State lonics just twenty years after it has started at the same location on the lake Maggiore in North Italy.

Book Ionic Liquid Electrolytes and Their Mixtures for Lithium Batteries

Download or read book Ionic Liquid Electrolytes and Their Mixtures for Lithium Batteries written by Paul Morgan Bayley and published by . This book was released on 2011 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: The insatiable apatite humanity has for energy provides a great desire for portable battery technology, with large growth and increased development sure to become one of the big achievements of this century. Lithium batteries provide the energy density required by modern devices, however, the flammability and toxicity of the electrolytes currently employed leaves much to be desired in the way of safety. In particular, lithium metal anodes, that take full advantage of the electrochemical properties of lithium and are the focus of this research, are considered too unsafe for commercial applications. Ionic Liquids (ILs) provide the safety and electrochemical stability to facilitate better lithium batteries, however, they still suffer from the disadvantage of typically having a viscosity 1-2 orders of magnitude above conventional solvents. Through a greater understanding of the affect of additives and blending on the transport properties and speciation within the electrolyte, a commercially practical material is closer to development. Screening a range of molecular additives, from common organic solvents to short chain oligoethers, has shown that the viscosity of the additive is not important and that selection of the right structure can dramatically enhance the transport properties and alter the speciation of the lithium ions. Although the carbonates increase the lithium ion diffusivity, their main mode of enhancement in battery electrolytes is their ability to polymerise into suitable Solid Electrolyte Interphase (SEI) layers. Even though tetrahydrofuran (THF) increased lithium diffusion more than the carbonates, its electrochemical instability negates any positive enhancement. Short chain oligoethers, particularly tetraglyme (TG), are an extremely effective additive that essentially removes the detrimental effect on the transport properties of the Ionic Liquid (IL) when lithium salt is added, enhancing the lithium ion diffusivity by more than a factor of 4 at 274 K. Interestingly, the diffusivity and molecular motions of the pyrrolidinium cation remain largely unchanged regardless of the additive that is present. Variable temperature Nuclear Magnetic Resonance Spectroscopy (NMR) spin-lattice relaxation experiments display a clear trend in lithium environment based on the complexing ability of the additive, with the order from the almost unchanged to dramatically different, respectively; Toluene, THF, 1NM3 and TG. Purely ionic electrolytes maintain the full safety aspect that ILs provide, however, the difficulties in maintaining reasonable transport properties while improving lithium electrochemistry are highlighted. The Nmethyl- N-butyl-morpholinium cation exhibited much lower conductivity than analogous structures without an ether oxygen yet its favourable lithium electrochemistry and high temperature cycling performance is promising for high temperature applications or for use as an additive. Binary and ternary mixtures of ILs with lithium salts provide a viable avenue to increase the transport properties and extend the operating temperature of the electrolyte. Using a common cation, N-methyl-N-propylpyrrolidinium, and mixed anions, the binary blend with an anion concentration at a ratio of 2:1, bis(fluorosulfonyl)imide:bis(trifluoromethanesulfonyl)imide, produced a material with a melting temperature more than 20 K lower than either pure component.