EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Ion Solvation  Mobility and Accessibility in Ionic Liquid Electrolytes for Energy Storage

Download or read book Ion Solvation Mobility and Accessibility in Ionic Liquid Electrolytes for Energy Storage written by Qianwen Huang and published by . This book was released on 2019 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ionic liquids (ILs) are salts that consist of only ions and are in a liquid phase at ambient temperature. Their unique properties, including non-flammability, negligible volatility, wide electrochemical stability window, high thermal stability, and structural tunability, enable ILs promising electrolytes for safer energy storage devices, such as lithium-metal batteries. Lithium metal batteries have about ten times higher theoretical energy density than traditional lithium-ion batteries. However, due to the high reactivity of the metallic lithium electrode, dendrites (needle-like electrodeposits) can form during battery charging and discharging. The formation of lithium dendrites can lead to efficiency loss, capacity decay, short circuits and thermal runaway. To address these safety challenges, a promising approach is to replace the carbonate organic electrolyte solvents with ILs. However, the slow lithium ion transport in IL-based electrolytes limits the charging and discharging rates of a rechargeable battery for practical applications. In this research, we developed IL mixtures with decreased viscosity and increased lithium ion mobility. These IL-based electrolytes demonstrate increased stability at room temperature in the Li-LFP cells where lithium metal is the anode and lithium iron phosphate, LiFePO4 (LFP) is the cathode. ILs are also being explored for use in supercapacitors with high power density due to their wide electrochemical window. However, the main challenge of such application is the poor wettability of ILs to porous electrodes. To address this challenge, we investigate a novel hybrid material designed in the form of a capsule with reduced graphene oxide shell and IL core (rGO-IL) that eliminates some of the challenges with wettability. Increased capacitance (based on active material mass, rGO) and surface utilization have been achieved in supercapacitors with the designed rGO-IL capsules. It is recognized that the developed rGO-IL material may have broader scientific impacts such as the CO2 separation processes. A current pressing need in CO2 capture from process exhaust gases or even air is the discovery of materials that have high CO2 capacity and selectivity without kinetic limitations. ILs have high CO2 solubility, however suffer from large viscosities which imposes mass transport challenges for CO2 uptake and separation. An explorative study on the utility of rGO-IL materials for CO2 separation is carried out as a possible future direction for the application of rGO-IL capsules. Preliminary results demonstrate increased CO2 absorption capacity with improved absorption mass transfer rate with GO-IL capsules, compared to bulk ILs.

Book Ceramic and Specialty Electrolytes for Energy Storage Devices

Download or read book Ceramic and Specialty Electrolytes for Energy Storage Devices written by Prasanth Raghavan and published by CRC Press. This book was released on 2021-04-04 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ceramic and Specialty Electrolytes for Energy Storage Devices, Volume II, investigates recent progress and challenges in a wide range of ceramic solid and quasi-solid electrolytes and specialty electrolytes for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: • Offers a detailed outlook on the performance requirements and ion transportation mechanism in solid polymer electrolytes • Covers solid-state electrolytes based on oxides (perovskite, anti-perovskite) and sulfide-type ion conductor electrolytes for lithium-ion batteries followed by solid-state electrolytes based on NASICON and garnet-type ionic conductors • Discusses electrolytes employed for high-temperature lithium-ion batteries, low-temperature lithium-ion batteries, and magnesium-ion batteries • Describes sodium-ion batteries, transparent electrolytes for energy storage devices, non-platinum-based cathode electrocatalyst for direct methanol fuel cells, non-platinum-based anode electrocatalyst for direct methanol fuel cells, and ionic liquid-based electrolytes for supercapacitor applications • Suitable for readers with experience in batteries as well as newcomers to the field This book will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials and chemical engineers, as well as those involved in related disciplines.

Book Rechargeable Battery Electrolytes

Download or read book Rechargeable Battery Electrolytes written by Jianmin Ma and published by Royal Society of Chemistry. This book was released on 2024-02-26 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rechargeable batteries are one of the crucial ways we are going to solve the sustainable energy crisis. Lithium-ion batteries have been commercialised and are heavily relied upon, however, the scarcity of lithium resources increases the production cost and hinders further application. Additionally, the toxic and flammable electrolyte brings many potential safety hazards including environmental pollution. Looking for low-cost, safe, and environmentally friendly alternatives to LIBs has become a valuable research direction. The modification of batteries is focused on the anode, the cathode and electrolyte. Globally, researchers have moved onto new rechargeable batteries based on multivalent metal ions which have been extensively studied, including K+, Ca2+, Mg2+ and Al3+. However, the electrolyte is a very important component of a battery as its physical and chemical properties directly affect the electrochemical performance and energy storage mechanism. Finding and selecting an appropriate electrolyte system is a crucial factor that must be taken into account to make these post-lithium-ion batteries commercially viable. Until now, it has been challenging to develop a suitable electrolyte with a wide electrochemical stability window and stable anode interface. This book covers all the major ion-battery groups and their electrolytes, examining their performance and suitability in different solvents: aqueous, non-aqueous, solid gel and polymer. It is suitable for all levels of students and researchers who want to understand the fundamentals and future challenges of developing electrolytes.

Book Studies of Interactions Between Ions in Ionics Liquids Electrolytes by Nuclear Magnetic Resonance

Download or read book Studies of Interactions Between Ions in Ionics Liquids Electrolytes by Nuclear Magnetic Resonance written by Pierre Martin (Chimiste).) and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is focused on the study of electrolytes for energy storage devices such as lithium ion batteries. The specific materials are pyrrolidinium-based ionic liquid electrolytes with bis-fluorosulfonylimide (FSI) as the counter anion, and also containing lithium.The main experimental method of characterization is Nuclear Magnetic Resonance (NMR) spectroscopy, which can be used to probe structure, dynamics and spatial arrangements between anions and cations. NMR-based diffusion measurements or spin lattice relaxation experiments, using 1H for cations, 19F for anions and 7Li, are used to study the ionic transport in the liquid and the molecular tumbling of the different ions respectively.However, in order to attempt to better understand the ion transport mechanism at the molecular level in these ionic liquids, the HOESY (Heteronuclear Overhauser Effect SpectroscopY) experiment is used. This technique is based on a transfer of magnetization through space between two different nuclear isotopes. As this transfer is generally mediated by short-range interactions, it provides information on which species are close together in the liquid.A large part of this work is based on the development of the HOESY technique itself, both improving the implementation of the NMR pulse sequence to reduce the experimental time, but also improving ways to analyze the resulting data in a quantitative way and developing an automatic and systematic data fitting procedure. Molecular Dynamics (MD) simulations and NMR relaxation measurements are also used to assist the HOESY analysis, allowing correlations with distances between nuclei and motional parameters such as correlation times to be established, which will lead to a better understanding of the ion interactions. In addition to this technique development, others ionic liquids including longer alkyl, longer cycle or even an ether-o-alkyl group on the alkyl chain, are studied by HOESY in order to observe the impact of the cation structure on the ionic interactions. Another complementary technique, dynamic nuclear polarization, is also used in order to study the ionic liquid in the glassy state structure which mimics the liquid state.

Book Atomistic Modeling of Ionic Liquid Based Electrolytes for Lithium Batteries

Download or read book Atomistic Modeling of Ionic Liquid Based Electrolytes for Lithium Batteries written by Anirudh Deshpande and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electrolytes for Lithium and Lithium Ion Batteries

Download or read book Electrolytes for Lithium and Lithium Ion Batteries written by T. Richard Jow and published by Springer. This book was released on 2014-05-06 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrolytes for Lithium and Lithium-ion Batteries provides a comprehensive overview of the scientific understanding and technological development of electrolyte materials in the last several years. This book covers key electrolytes such as LiPF6 salt in mixed-carbonate solvents with additives for the state-of-the-art Li-ion batteries as well as new electrolyte materials developed recently that lay the foundation for future advances. This book also reviews the characterization of electrolyte materials for their transport properties, structures, phase relationships, stabilities, and impurities. The book discusses in-depth the electrode-electrolyte interactions and interphasial chemistries that are key for the successful use of the electrolyte in practical devices. The Quantum Mechanical and Molecular Dynamical calculations that has proved to be so powerful in understanding and predicating behavior and properties of materials is also reviewed in this book. Electrolytes for Lithium and Lithium-ion Batteries is ideal for electrochemists, engineers, researchers interested in energy science and technology, material scientists, and physicists working on energy.

Book Theoretical Insights Into the Electrochemical Properties of Ionic Liquid Electrolytes in Lithium Ion Batteries

Download or read book Theoretical Insights Into the Electrochemical Properties of Ionic Liquid Electrolytes in Lithium Ion Batteries written by Leila Maftoon-Azad and published by . This book was released on 2024-11 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book provides a concise overview of the use of ionic liquids as electrolytes in lithium-ion batteries (LIBs) from a theoretical and computational perspective. It focuses on computational studies to understand the behavior of lithium ions in different ionic liquids and to optimize the performance of ionic liquid-based electrolytes. Provides a thorough understanding of the theoretical and computational aspects of using ionic liquids as electrolytes in LIBs, including the evaluation and reproducibility of the theoretical paths. Includes an overview of different types of ionic liquids that can be used as electrolytes, their properties, and how they affect the performance of LIBs. Covers various computational methods such as density functional theory, molecular dynamics, and quantum mechanics that have been used to study the behavior of lithium ions in different solvents and to optimize the performance of ionic liquid-based electrolytes. Discusses recent advances such as new computational methods for predicting the properties of ionic liquid-based electrolytes, new strategies for improving the stability and conductivity of these electrolytes, and new approaches for understanding the kinetics and thermodynamics of redox reactions with ionic liquids. Suggests how theoretical insights can be translated into practical applications for improving performance and safety. Features case studies that demonstrate the practical applications of ionic liquid-based LIBs in various fields such as renewable energy storage and electric vehicles. This monograph will be of interest to engineers working on LIB optimization"--

Book Modeling Electrochemical Energy Storage at the Atomic Scale

Download or read book Modeling Electrochemical Energy Storage at the Atomic Scale written by Martin Korth and published by Springer. This book was released on 2018-11-30 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. The chapters “Assessment of Simple Models for Molecular Simulation of Ethylene Carbonate and Propylene Carbonate as Solvents for Electrolyte Solutions” and “Elucidating Solvation Structures for Rational Design of Multivalent Electrolytes—A Review” are available open access under a CC BY 4.0 License via link.springer.com.

Book Ionic Liquid based Electrolytes

Download or read book Ionic Liquid based Electrolytes written by Ruben-Simon Kühnel and published by . This book was released on 2014 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Magnesium Battery Electrolytes in Ionic Liquids

Download or read book Magnesium Battery Electrolytes in Ionic Liquids written by Tylan Strike Watkins and published by . This book was released on 2016 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: A lack of adequate energy storage technologies is arguably the greatest hindrance to a modern sustainable energy infrastructure. Chemical energy storage, in the form of batteries, is an obvious solution to the problem. Unfortunately, today's state of the art battery technologies fail to meet the desired metrics for full scale electric grid and/or electric vehicle role out. Considerable effort from scientists and engineers has gone into the pursuit of battery chemistries theoretically capable of far outperforming leading technologies like Li-ion cells. For instance, an anode of the relatively abundant and cheap metal, magnesium, would boost the specific energy by over 4.6 times that of the current Li-ion anode (LiC6). The work presented here explores the compatibility of magnesium electrolytes in TFSI-based ionic liquids with a Mg anode (TFSI = bis(trifluoromethylsulfonyl)imide). Correlations are made between the Mg2+ speciation conditions in bulk solutions (as determined via Raman spectroscopy) and the corresponding electrochemical behavior of the electrolytes. It was found that by creating specific chelating conditions, with an appropriate Mg salt, the desired electrochemical behavior could be obtained, i.e. reversible electrodeposition and dissolution. Removal of TFSI contact ion pairs from the Mg2+ solvation shell was found to be essential for reversible electrodeposition. Ionic liquids with polyethylene glycol chains pendent from a parent pyrrolidinium cation were synthesized and used to create the necessary complexes with Mg2+, from Mg(BH4)2, so that reversible electrodeposition from a purely ionic liquid medium was achieved. The following document discusses findings from several electrochemical experiments on magnesium electrolytes in ionic liquids. Explanations for the failure of many of these systems to produce reversible Mg electrodeposition are provided. The key characteristics of ionic liquid systems that are capable of achieving reversible Mg electrodeposition are also given.

Book Ionic Solvation

    Book Details:
  • Author : Gennadiĭ Alekseevich Krestov
  • Publisher : Prentice Hall
  • Release : 1994
  • ISBN :
  • Pages : 368 pages

Download or read book Ionic Solvation written by Gennadiĭ Alekseevich Krestov and published by Prentice Hall. This book was released on 1994 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive, widely-read anthology presents cogent and provocativearticles from differing political perspectives on major issues in post-World WarII America. The fourth edition is considerably expanded to include newselections on the AIDS epidemic, gay rights, the women's movement, and theClinton-Gore administration. In addition to articles by leading historians theeditors have chosen first-person accounts by participants in each of the issuesunder discussion, from Martin Luther King, Jr.'s "Letter from the BirminghamJail" to Al Gore's speech on environmentalism. With lively introductions to eachsection providing a context for the articles, this book helps students makesense of the tumultuous world of our time.

Book Electrosorption

    Book Details:
  • Author : Eliezer Gileadi
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1468417312
  • Pages : 234 pages

Download or read book Electrosorption written by Eliezer Gileadi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: The gradual emergence during the last decade of the study of the mechanism of electrode reactions from the dark ages has given stimulus to a consideration of the double layer at metal-solution interfaces, which extends far outside the classical experimental studies of the capacitance of the mercury solution interface made during the 1950's by D. C. Grahame at Amherst College, Massachusetts. The central aspect of the study of an electrode reaction is the elucidation of its path and rate-determining step. Two fields are, however, prerequisites for such studies. First, it must be known what species are in the bulk of the solution, for these will seldom be simple ones such as H30~ and this study ("complex ions") has been made with both extent and depth. Second, the occupancy of the surface of the electrocatalyst and the associated field gradients must be known as a function of position in the double layer. Such "maps of the double layer" can be given with reasonable certainty up to concentrations of about 1 N for mercury in contact with solutions of inorganic ions. However, this is-or was until very recently-the extent of the know ledge. The problems confronting a fundamental approach to the rational development of, e.g., fuel cell catalysis were therefore considerable.

Book Computer Simulation of Liquids

Download or read book Computer Simulation of Liquids written by M. P. Allen and published by Oxford University Press. This book was released on 1989 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer simulation is an essential tool in studying the chemistry and physics of liquids. Simulations allow us to develop models and to test them against experimental data. This book is an introduction and practical guide to the molecular dynamics and Monte Carlo methods.

Book Polymerized Ionic Liquids

    Book Details:
  • Author : Ali Eftekhari
  • Publisher : Royal Society of Chemistry
  • Release : 2017-09-18
  • ISBN : 1782629602
  • Pages : 564 pages

Download or read book Polymerized Ionic Liquids written by Ali Eftekhari and published by Royal Society of Chemistry. This book was released on 2017-09-18 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series covers the fundamentals and applications of different smart material systems from renowned international experts.

Book Novel Electrolytes for Emerging Sodium Energy Storage Application

Download or read book Novel Electrolytes for Emerging Sodium Energy Storage Application written by Siti Aminah Mohd Noor and published by . This book was released on 2014 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing energy demand along with the growing understanding of the environmental consequences of the use of fossil fuels, have created a need for the development of new and advanced sustainable energy sources. One aspect of this need that arises from the intermittency of many sources is large scale electrical energy storage. Current high energy density electrochemical energy storage technologies rely on electrolytes based on flammable solvents, which are typically volatile organic compounds (VOCs) that result in major safety problems when applied to many novel applications. Using ionic liquids as electrolytes has been explored, as they potentially offer a solution to the safety problem of organic solvents, such as negligible vapor pressure and non flammability. On the other hand, while Li-ion batteries remain an important energy storage technology, there are concerns about the long-term availability and cost of lithium. Alternative electrochemical systems to lithium-based technologies are being investigated to ensure power storage devices are as low-cost and efficient as possible. Sodium-based technologies are promising alternative due to sodium's high abundance, low cost, low atomic mass, and relatively high (negative) electrochemical reduction potential.This thesis concentrates on three types of sodium-based ionic liquid electrolytes of relevance to emerging sodium energy storage applications. In the first section, it describes the preparation of ionogel electrolytes. In this system, we aimed to investigate the effect of the formation of a silica network on the ionic liquid properties. We found that the ionic conductivity of 3 wt.% silica ionogels is close to that of the pure IL and the Tg does not vary significantly as silica content increased. This shows that the formation of the silica network does not affect the dynamic properties of the IL. In the second section of this thesis, sodium-based ionic liquid electrolytes are prepared and compared with lithium-based ionic liquid electrolytes. The sodium electrolytes possess high ionic conductivity, though marginally lower than that of equivalent lithium systems. Deposition and dissolution of sodium metal was observed through cyclic voltammetry analysis. In order to improve the mechanical properties of these liquid electrolytes, two types of gel electrolytes were investigated: (i) silica gel electrolytes and (ii) PMMA-gel electrolytes. With the former facile plating and stripping of sodium metal was observed through cyclic voltammetry. The ionic conductivity of both gel systems slightly decreased as the physical properties changed from a liquid to gel. However, the Tg was not significantly affected, hence the motional dynamics of liquid electrolytes are not notably affected in the transition to the gel state in these electrolytes. These findings show that sodium-based ionic liquid electrolytes can be a promising candidate for secondary sodium battery applications.In the final section of this thesis polyelectrolyte systems were developed that were designed to be single ion conductors, by tethering the anion to the polymer backbone; such systems are often referred to as ionomers. Two types of ionomers were investigated. The hypothesis guiding the design of these systems was that anionic centers on the polymer that are only weakly associated with the corresponding counterion, would allow decoupling of the cation motion from the bulk dynamics of the material. We found that the ionic conductivity strongly decoupled from the Tg of the backbone, particularly for compositions below 50% Na+ for both systems of ionomers. Characterization showed the Tg of the ionomers did not vary significantly as the amount of Na+ varied, while the conductivity increased with decreasing Na+ content, indicating conductivity increasingly decoupled from Tg. On the other hand, phase separation was clearly observed by SEM and Raman spectroscopy. The introduction of plasticizer significantly increased the ionic conductivity by several orders of magnitude. The effect of different types of ammonium counter-cations on the conductivity of ionomers was also investigated. We observed a decreasing Tg with increasing bulkiness of the quaternary ammonium cation, and an increasing degree of decoupling from Tg within these systems.

Book Fast Ion Transport in Solids

    Book Details:
  • Author : B. Scrosati
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 9401119163
  • Pages : 375 pages

Download or read book Fast Ion Transport in Solids written by B. Scrosati and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main motivation for the organization of the Advanced Research Workshop in Belgirate was the promotion of discussions on the most recent issues and the future perspectives in the field of Solid State lonics. The location was chosen on purpose since Belgirate was the place were twenty years ago, also then under the sponsorship of NATO, the very first international meeting on this important and interdisciplinary field took place. That meeting was named "Fast Ion Transport in Solids" and gathered virtually everybody at that time having been active in any aspect of motion of ions in solids. The original Belgirate Meeting made for the first time visible the technological potential related to the phenomenon of the fast ionic transport in solids and, accordingly, the field was given the name "Solid State lonics". This field is now expanded to cover a wide range of technologies which includes chemical sensors for environmental and process control, electrochromic windows, mirrors and displays, fuel cells, high performance rechargeable batteries for stationary applications and electrotraction, chemotronics, semiconductor ionics, water electrolysis cells for hydrogen economy and other applications. The main idea for holding an anniversary meeting was that of discussing the most recent issues and the future perspectives of Solid State lonics just twenty years after it has started at the same location on the lake Maggiore in North Italy.

Book Structures and Interactions of Ionic Liquids

Download or read book Structures and Interactions of Ionic Liquids written by Suojiang Zhang and published by Springer. This book was released on 2013-12-20 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Structures, Bonding and Hydrogen Bonds, by Kun Dong, Qian Wang, Xingmei Lu, Suojiang Zhang Aggregation in System of Ionic Liquids, by Jianji Wang, Huiyong Wang Dissolution of Biomass Using Ionic Liquids, by Hui Wang, Gabriela Gurau, Robin D. Rogers Effect of the Structures of Ionic Liquids on Their Physical-Chemical Properties, by Yu-Feng Hu, Xiao-Ming Peng Microstructure study of Ionic liquids by spectroscopy, by Haoran Li Structures and Thermodynamic Properties of Ionic Liquids, by Tiancheng Mu, Buxing Han