EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Ion Exchange Columns for Selective Removal of Cesium from Aqueous Radioactive Waste Using Hydrous Crystalline Silico titanates

Download or read book Ion Exchange Columns for Selective Removal of Cesium from Aqueous Radioactive Waste Using Hydrous Crystalline Silico titanates written by David Michael Ricci and published by . This book was released on 1995 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ion Exchange of Cesium by Crystalline Silico titanates

Download or read book Ion Exchange of Cesium by Crystalline Silico titanates written by and published by . This book was released on 1995 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: The crystalline silico-titanates developed by the Department of Chemical Engineering at Texas A & M University, Sandia National Laboratories and UOP exhibits extremely high ion exchange selectivity for removing cesium from aqueous defense wastes. Based on experimental data and structure studies, a competitive ion exchange model was proposed to predict the ion exchange performance in different simulated waste solutions. The predicted distribution coefficients were within 10% of the experimentally determined values.

Book Cesium Removal Using Crystalline Silicotitanate  Innovative Technology Summary Report

Download or read book Cesium Removal Using Crystalline Silicotitanate Innovative Technology Summary Report written by and published by . This book was released on 1999 with total page 21 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approximately 100 million gallons of radioactive waste is stored in underground storage tanks at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation, and Savannah River Site (SRS). Most of the radioactivity comes from 137Cs, which emits high-activity gamma radiation. The Cesium Removal System is a modular, transportable, ion-exchange system configured as a compact processing unit. Liquid tank waste flows through columns packed with solid material, called a sorbent, that selectively adsorbs cesium and allows the other materials to pass through. The sorbent is crystalline silicotitanate (CST), an engineered material with a high capacity for sorbing cesium from alkaline wastes. The Cesium Removal System was demonstrated at Oak Ridge using Melton Valley Storage Tank (MVST) waste for feed. Demonstration operations began in September 1996 and were completed during June 1997. Prior to the demonstration, a number of ion-exchange materials were evaluated at Oak Ridge with MVST waste. Also, three ion-exchange materials and three waste types were tested at Hanford. These bench-scale tests were conducted in a hot cell. Hanford's results showed that 300 times less sorbent was used by selecting Ionsiv IE-911 over organic ion-exchange resins for cesium removal. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues and lessons learned.

Book Preliminary Ion Exchange Modeling for Removal of Cesium from Hanford Waste Using Hydrous Crystalline Silicotitanate Material

Download or read book Preliminary Ion Exchange Modeling for Removal of Cesium from Hanford Waste Using Hydrous Crystalline Silicotitanate Material written by and published by . This book was released on 2004 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the current pretreatment facility design of the River Protection Project (RPP) Waste Treatment Plant (WTP), the removal of cesium from low activity waste (LAW) is achieved by ion-exchange technology based on SuperLig(R) 644 resin. Due to recent concerns over potential radiological and chemical degradation of SuperLig(R) 644 resin and increased pressure drops observed during pilot-scale column studies, an increased interest in developing a potential backup ion-exchanger material has resulted. Ideally, a backup ion-exchanger material would replace the SuperLig(R) 644 resin and have no other major impacts on the pretreatment facility flowsheet. Such an ideal exchanger has not been identified to date. However, Crystalline Silicotitanate (CST) ion-exchanger materials have been studied for the removal of cesium from a variety of DOE wastes over the last decade. CST ion-exchanger materials demonstrate a high affinity for cesium under high alkalinity conditions and have been under investigation for cesium removal specifically at Hanford and SRS during the last six years. Since CST is an inorganic based material (with excellent properties in regard to chemical, radiological, and thermal stability) that is considered to be practically non-elutable (while SuperLig(R) 644 is an organic based elutable resin), the overall pretreatment facility flowsheet would be impacted in various ways. However, the CST material is still being considered as a potential backup ion-exchanger material. The performance of a proposed backup ion-exchange column using IONSIV IE-911 (CST in its engineered-form) material for the removal of cesium from Hanford high level radioactive alkaline waste is discussed. This report focuses attention on the ion-exchange aspects and addresses the loading phase of the process cycle.

Book Crystalline Silicotitanates  new Ion Exchanger for Selective Removal of Cesium and Strontium from Radwastes

Download or read book Crystalline Silicotitanates new Ion Exchanger for Selective Removal of Cesium and Strontium from Radwastes written by and published by . This book was released on 1996 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new class of inorganic ion exchange material called crystalline silicotitanates (CST) has been developed for radioactive waste treatment in a collaborative effort between Sandia National Laboratories and Texas A & M University. The Sandia National Laboratories Laboratory Directed Research and Development program provided the initial funding for this effort and this report summarizes the rapid progress that was achieved. A wide range of compositions were synthesized, evaluated for cesium (Cs) removal efficiency, and a composition called TAM-5 was developed that exhibits high selectivity and affinity for Cs and strontium (Sr). Tests show it can remove parts per million concentrations of Cs from highly alkaline, high-sodium, simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. In experiments with solutions that simulate highly alkaline Hanford defense wastes, the crystalline silicotitanates exhibit distribution coefficients for Cs of greater than 2,000 ml/g, and distribution coefficients greater than 10,000 ml/g for solutions adjusted to a pH between 1 and 10. In addition, the CSTs were found to exhibit distribution coefficients for Sr+ greater than 100,000 ml/g and for plutonium of 2,000 ml/g from simulated Hanford waste. The CST crystal structure was determined and positions of individual atoms identified using x-ray and neutron diffraction. The structural information has permitted identification of the ion exchange sites and provided insights into the strong effect of pH on Cs ion exchange. Information on the synthesis, composition, and structure of CST is considered proprietary and is not discussed in this report.

Book Modeling of Crystalline Silicotitanate Ion Exchange Columns

Download or read book Modeling of Crystalline Silicotitanate Ion Exchange Columns written by and published by . This book was released on 1999 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R.G. Anthony, Department of Chemical Engineering, Texas A & 038;M University, and Professor S.W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports.

Book Modeling of Crystalline Silicotitanate Ion Exchange Columns Using Experimental Data from SRS Simulated Waste

Download or read book Modeling of Crystalline Silicotitanate Ion Exchange Columns Using Experimental Data from SRS Simulated Waste written by and published by . This book was released on 1999 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-elutable ion exchange using crystalline silicotitanate is being considered for removing cesium from Savannah River Site radioactive waste. The construction cost of this process depends strongly on the size of the ion exchange column required to meet product specifications.

Book An Optimal Ion Exchange Design for Removal of Cesium from Hanford Waste

Download or read book An Optimal Ion Exchange Design for Removal of Cesium from Hanford Waste written by and published by . This book was released on 2002 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-elutable crystalline silicotitanate (CST) ion-exchanger materials have been studied for removing cesium from a variety of radioactive wastes at several U.S. DOE sites over the last decade. For the current pretreatment facility design of the River Protection Project (RPP) Waste Treatment Plant (WTP) in Hanford, the removal of cesium from low activity waste (LAW) is achieved by ion-exchange technology based on SuperLig(R) 644 resin. However, due to concerns over potential radiological and chemical degradation of SuperLig(R) 644 resin, IONSIV IE-911 (CST in its engineered form) material is being proposed as a backup ion-exchange material for the removal of cesium from Hanford radioactive waste. This paper discusses the methodology used to determine the optimal CST ion-exchange column size to process all 16 separate batches of feeds from the ten targeted Hanford waste tanks. The optimal design ensures the best utilization of CST material and therefore results in a minimum amount of spent CST.

Book Preliminary Ion Exchange Modeling for Removal of Cesium from Hanford Waste Using SuperLig 644 Resin

Download or read book Preliminary Ion Exchange Modeling for Removal of Cesium from Hanford Waste Using SuperLig 644 Resin written by and published by . This book was released on 2000 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: A proposed facility is being designed for the immobilization of Hanford high-level radioactive waste. One unit process in the facility is designed to remove radioactive cesium by ion-exchange from the strongly alkaline aqueous phase. A resin specifically designed with high selectivity of cesium under alkaline conditions is being investigated. The resin also is elutable under more acidic conditions. The proposed design of the facility consists of two sets of two packed columns placed in series (i.e., a lead column followed by a lag (guard) column configuration). During operation, upon reaching a specified cesium concentration criterion at the exit of the lag column, operation is switched to the second set of lead and lag columns. The cesium-loaded lead column is processed (i.e., washed and eluted) and switched to the lag position. the previous lag column is then placed in the lead position (without eluting) and the system is ready for use in the next cycle. For a well designed process, the loading and elution processes result in significant volume reductions in aqueous high-level waste.

Book Ion Exchange Modeling of Crystalline Silicotitanate  IONSIV R  IE 911  Column for Cesium Removal from Argentine Waste

Download or read book Ion Exchange Modeling of Crystalline Silicotitanate IONSIV R IE 911 Column for Cesium Removal from Argentine Waste written by and published by . This book was released on 2003 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: The U.S. Department of Energy (DOE) and the Nuclear Energy Commission of Argentina (CNEA) have a collaborative project to separate cesium/strontium from waste resulting from the production of Mo-99. The Pacific Northwest National Laboratory (PNNL) is assisting DOE on this joint project by providing technical guidance to CNEA scientists. As part of the collaboration, PNNL staff works with staff at the Savannah River Technology Center (SRTC) to run the VERSE-LC model for removal of cesium from the Mo-99 waste using the crystalline silicotitanate (CST) material (IONSIV(R) IE-911, UOP LLC, DesPlaines, IL) based on technical data provided by CNEA. This report discusses the VERSE-LC ion-exchange-column model and the predicted results of CNEA test cases.

Book Ion Exchange Kinetics of Cesium for Various Reaction Designs Using Crystalline Silicotitanate  UOP IONSIV IE 911

Download or read book Ion Exchange Kinetics of Cesium for Various Reaction Designs Using Crystalline Silicotitanate UOP IONSIV IE 911 written by Sung Hyun Kim and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Through collaborative efforts at Texas A & M University and Sandia National Laboratories, a crystalline silicotitanate (CST), which shows extremely high selectivity for radioactive cesium removal in highly concentrated sodium solutions, was synthesized. The effect of hydrogen peroxide on a CST under cesium ion exchange conditions has been investigated. The experimental results with hydrogen peroxide showed that the distribution coefficient of cesium decreased and the tetragonal phase, the major component of CST, slowly dissolved at hydrogen peroxide concentrations greater than 1 M.A simple and novel experimental apparatus for a single-layer ion exchange column was developed to generate experimental data for estimation of the intraparticle effective diffusivity. A mathematical model is presented for estimation of effective diffusivities for a single-layer column of CST granules. The intraparticle effective diffusivity for Cs was estimated as a parameter in the analytical solution. By using the least square method, the effective diffusivities of 1.56 ł 0.14 x 10-11 m2/s and 0.68 ł 0.09x 10-11 m2/s, respectively, were obtained. The difference in the two values was due to the different viscosities of the solutions. A good fit of the experimental data was obtained which supports the use of the homogeneous model for this system. A counter-current ion exchange (CCIX) process was designed to treat nuclear waste at the Savannah River Site. A numerical method based on the orthogonal collocation method was used to simulate the concentration profile of cesium in the CCIX loaded with CST granules. To maximize cesium loading onto the CST and minimize the volume of CST, two design cases of a moving bed, where the fresh CST is pulsed into the column at certain periods or at certain concentration of cesium, were investigated. Simulation results showed that cesium removal behavior in the pilot-scale test of CCIX experiment, where the column length is 22 ft and the CST is pulsed 1 ft in every 24 hours, was well predicted by using the values of the effective diffusivities of 1.0 to 6.0 x 10-11 m2/s.

Book Selective Removal of Strontium and Cesium from Simulated Waste Solution with Titanate Ion Exchangers in a Filter Cartridge CONFIGURATIONS 12092

Download or read book Selective Removal of Strontium and Cesium from Simulated Waste Solution with Titanate Ion Exchangers in a Filter Cartridge CONFIGURATIONS 12092 written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate and crystalline silicotitanate laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both strontium-85 and cesium-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor for strontium-85 with monosodium titanate impregnated filter membrane cartridges measured 26, representing 96% strontium-85 removal efficiency. On the other hand, the strontium-85 instantaneous decontamination factor with co-sintered active monosodium titanate cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the monosodium titanate impregnated membrane cartridges and crystalline silicotitanate impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active monosodium titanate cartridges and co-sintered active crystalline silicotitanate cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of cesium-137 with co-sintered crystalline silicotitanate cartridges. Tests results with crystalline silicotitanate impregnated membrane cartridges for cesium-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating monosodium titanate and crystalline silicotitanate sorbents into membranes represent a promising method for the semicontinuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.

Book Cesium Removal from Simulated SRS High Level Waste Using Crystalline Silicotitanate

Download or read book Cesium Removal from Simulated SRS High Level Waste Using Crystalline Silicotitanate written by and published by . This book was released on 1998 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study measured the adsorption of cesium from simulated Savannah River Site liquid waste onto crystalline silicotitanate (CST) in equilibrium (Kd) and ion exchange column tests.

Book Vitrification of Ion Exchange Materials  Innovative Technology Summary Report

Download or read book Vitrification of Ion Exchange Materials Innovative Technology Summary Report written by and published by . This book was released on 1999 with total page 23 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Department of Energy is responsible for removing and immobilizing radioactive waste from the underground tanks at the Savannah River Site, Oak Ridge Reservation, Idaho National Engineering and Environmental Laboratory, and Hanford Site. The waste contains highly radioactive cesium which must be removed from the low activity fraction of the waste and vitrified with the high level waste. Crystalline silicotitanate, a highly selective inorganic ion exchange material was developed to remove cesium from liquid tank wastes. Crystalline silicotitanate is non-regenerable. One alternative is to vitrify the cesium-loaded crystalline silicotitanate and dispose of it in high level waste glass. Glass formulations were developed and pilot scale vitrification runs have been conducted. Ten gallons of loaded crystalline silicotitanate from the Cesium Removal Demonstration at Oak Ridge Reservation were vitrified at the Savannah River Site in 1997.

Book Development and Properties of Crystalline Silicotitanate  CST  Ion Exchangers for Radioactive Waste Applications

Download or read book Development and Properties of Crystalline Silicotitanate CST Ion Exchangers for Radioactive Waste Applications written by and published by . This book was released on 1997 with total page 61 pages. Available in PDF, EPUB and Kindle. Book excerpt: Crystalline silicotitanates (CSTs) are a new class of ion exchangers that were jointly invented by researchers at Sandia National Laboratories and Texas A & M University. One particular CST, known as TAM-5, is remarkable for its ability to separate parts-per-million concentrations of cesium from highly alkaline solutions (pH> 14) containing high sodium concentrations (>5M). It is also highly effective for removing cesium from neutral and acidic solutions, and for removing strontium from basic and neutral solutions. Cesium isotopes are fission products that account for a large portion of the radioactivity in waste streams generated during weapons material production. Tests performed at numerous locations with early lab-scale TAM-5 samples established the material as a leading candidate for treating radioactive waste volumes such as those found at the Hanford site in Washington. Thus Sandia developed a Cooperative Research and Development Agreement (CRADA) partnership with UOP, a world leader in developing, commercializing, and supplying adsorbents and associated process technology to commercialize and further develop the material. CSTs are now commercially available from UOP in a powder (UOP IONSIV{reg_sign} IE-910 ion exchanger) and granular form suitable for column ion exchange operations (UOP IONSIV{reg_sign} IE-911 ion exchanger). These materials exhibit a high capacity for cesium in a wide variety of solutions of interest to the Department of Energy, and they are chemically, thermally, and radiation stable. They have performed well in tests at numerous sites with actual radioactive waste solutions, and are being demonstrated in the 100,000 liter Cesium Removal Demonstration taking place at Oak Ridge National Laboratory with Melton Valley Storage Tank waste. It has been estimated that applying CSTs to the Hanford cleanup alone will result in a savings of more than $300 million over baseline technologies.

Book DEVELOPMENT OF PROTOTYPE TITANATE ION EXCHANGE LOADED MEMBRANES FOR STRONTIUM  CESIUM AND ACTINIDE DECONTAMINATION FROM AQUEOUS MEDIA

Download or read book DEVELOPMENT OF PROTOTYPE TITANATE ION EXCHANGE LOADED MEMBRANES FOR STRONTIUM CESIUM AND ACTINIDE DECONTAMINATION FROM AQUEOUS MEDIA written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We have successfully incorporated high surface area particles of titanate ion exchange materials (monosodium titanate and crystalline silicotitanate) with acceptable particle size distribution into porous and inert support membrane fibrils consisting of polytetrafluoroethylene (Teflon{reg_sign}), polyethylene and cellulose materials. The resulting membrane sheets, under laboratory conditions, were used to evaluate the removal of surrogate radioactive materials for cesium-137 and strontium-90 from high caustic nuclear waste simulants. These membrane supports met the nominal requirement for nonchemical interaction with the embedded ion exchange materials and were porous enough to allow sufficient liquid flow. Some of this 47-mm size stamped out prototype titanium impregnated ion exchange membrane discs was found to remove more than 96% of dissolved cesium-133 and strontium-88 from a caustic nuclear waste salt simulants. Since in traditional ion exchange based column technology monosodium titanate (MST) is known to have great affinity for the sorbing of other actinides like plutonium, neptunium and even uranium, we expect that the MST-based membranes developed here, although not directly evaluated for uptake of these three actinides because of costs associated with working with actinides which do not have 'true' experimental surrogates, would also show significant affinity for these actinides in aqueous media. It was also observed that crystalline silicotitanate impregnated polytetrafluoroethylene or polyethylene membranes became less selective and sorbed both cesium and strontium from the caustic aqueous salt simulants.

Book Cesium Removal Demonstration Utilizing Crystalline Silicotitanate Sorbent for Processing Melton Valley Storage Tank Supernate

Download or read book Cesium Removal Demonstration Utilizing Crystalline Silicotitanate Sorbent for Processing Melton Valley Storage Tank Supernate written by and published by . This book was released on 1998 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report provides details of the Cesium Removal Demonstration (CsRD), which was conducted at Oak Ridge National Laboratory (ORNL) on radioactive waste from the Melton Valley Storage Tanks. The CsRD was the first large-scale use of state-of-the-art sorbents being developed by private industry for the selective removal of cesium and other radionuclides from liquid wastes stored across the DOE complex. The crystalline silicotitanate sorbent used in the demonstration was chosen because of its effectiveness in laboratory tests using bench-scale columns. The demonstration showed that the cesium could be removed from the supernate and concentrated on a small-volume, solid waste form that would meet the waste acceptance criteria for the Nevada Test Site. During this project, the CsRD system processed> 115,000 L (30,000 gal) of radioactive supernate with minimal operational problems. Sluicing, drying, and remote transportation of the sorbent, which could not be done on a bench scale, were successfully demonstrated. The system was then decontaminated to the extent that it could be contact maintained with the use of localized shielding only. By utilizing a modular, transportable design and placement within existing facilities, the system can be transferred to different sites for reuse. The initial unit has now been removed from the process building and is presently being reinstalled for use in baseline operations at ORNL.