EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Ion Acceleration in Ultra thin Foils Undergoing Relativistically Induced Transparency

Download or read book Ion Acceleration in Ultra thin Foils Undergoing Relativistically Induced Transparency written by Haydn W. Powell and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis reports on experimental and numerical investigations of ion acceleration and the underlying mechanisms of energy transfer in the interaction of intense laser pulses with ultra-thin foils undergoing relativistic induced transparency. The optimisation and optical control of the ion beam properties including the beam flux, maximum energy and energy spread is important for the development of applications of laser-driven ion beams. Multiple laser-ion acceleration mechanisms, driven by sheath fields, radiation pressure and transparency enhancement occur in intense laser pulse interactions with an ultra-thin foil. This is experimentally and numerically demonstrated in the work presented in this thesis. Results from an experimental investigation of ion acceleration from ultra-thin (nanometer-thick) foils using the Vulcan petawatt laser facility are presented. Spatially separating the multiple beam components arising from the differing acceleration mechanisms enables the underlying physics of the individual mechanisms to be investigated. In the case of foils undergoing relativistic induced transparency, it is shown that an extended channel and resulting jet is formed in the expanding plasma at the rear of the target, resulting in higher laser energy absorption into electrons and enhanced ion acceleration in a localised region. This results from volumetric heating of electrons by the laser pulse propagating within the channel. The measured maximum energy of the protons in the enhanced region of the jet is found to be highly sensitive to the laser pulse contrast and rising edge intensity profile of the laser. It is shown, using a controlled pre-expansion of the target, that an increase in the maximum proton energy by a factor two is achievable. Numerical investigations of the interaction, using particle-in-cell (PIC) simulations, show that an idealised sharp rising edge Gaussian laser intensity profile produces the highest proton energy, though this condition could not be achieved experimentally. The simulations show that controlled pre-expansion of the target, by variation of the rising edge intensity profile, enables better conditions for channel formation and energy coupling to electrons and thus protons. A detailed numerical (PIC) investigation of the mechanisms of laser energy transfer to electrons and ions in thin foils undergoing relativistically induced transparency is also presented. The role of streaming instabilities in the transfer of energy between particle species is investigated. It is found that in addition to the relativistic Buneman instability, which arises from streaming of the volumetrically heated relativistic electrons with the background ions during transparency, ionion streaming in the expanding plasma also plays a role in enhancing the final ion energy. Enhancement of proton maximum energies via ion-ion streaming from shock-accelerated aluminium ions is observed in 1D PIC simulations and the energy exchange is demonstrated to be sensitive to the plasma density. Energy transfer between co-directional ion species is also observed in higher dimension 2D simulations. The simulations show that the greatest enhancement in proton energy is due to streaming of electrons in the region of the plasma jet formed in the expanding plasma.

Book Collective Charged Particle Dynamics in Relativistically Transparent Laser plasma Interactions

Download or read book Collective Charged Particle Dynamics in Relativistically Transparent Laser plasma Interactions written by Bruno González-Izquierdo and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis reports on experimental and numerical investigations of the collective response of electrons and ions to the interaction of ultra-intense (1020 Wcm−2) laser with ultra-thin (nanometre scale) foils undergoing expansion and relativistic induced transparency. The onset of this relativistic mechanism is also characterised and studied in detail. This new insight into relativistic transparency is an important step towards optical control of charged particle dynamics in laser driven dense plasma sources and in its potential applications; including ion and radiation source development.The experimental and numerical investigations exploring the onset and the underpinning physics of the relativistic transparency have focused on its dependency on the target areal density, laser intensity and polarisation. The results show a maximum laser transmission for the thinnest targets investigated, which decreases exponentially with increasing target thickness. The same trend is obtained for linearly and circularly polarised laser light. However, for a given target thickness, the linear polarisation case exhibits a significantly higher transmission fraction, with respect to the circular polarisation case, due to additional electron heating and expansion. Moreover, it is shown that for the thinnest targets, once they become relativistically transparent, the transmitted light fraction increases rapidly as the laser intensity increases. The increasing rate is shown to be more pronounced in the thinnest targets investigated. This is diagnosed by measurement of both the fundamental and second harmonic wavelengths. An alternative approach, based on numerical measurement of the critical surface velocity, as a function of time, for various target thickness, and comparing it with corresponding analytical models is also proposed. The onset of relativistic induced transparency is found to curb the radiation pressure effciency of the charged particle acceleration mechanism.Investigations of the collective response of electrons in ultra-thin foils undergoing transparency show that a 'relativistic plasma aperture' is generated by intense laser light in this regime, resulting in the fundamental optical phenomenon of diffraction. It is numerically found that the plasma electrons collectively respond to the resulting laser near-field diffraction pattern, resulting in a beam of energetic electrons with spatial-intensity distribution, related to this diffraction structure, which can be controlled by variation of the laser pulse parameters,and in turn the onset of relativistic transparency. Additionally, it is shown that static electron beam, and induced magnetic field, structures can be made to rotate at fixed or variable angular frequencies depending on the degree of ellipticity in the laser polarisation. The predicted electron beam distributions using the 'relativistic plasma aperture' concept are verified experimentally.Understanding the collective response of plasma electrons to transparency and how this affects the subsequent acceleration of ions is highly important to the interpretation of experiments exploring ion acceleration employing ultra-thin foils. Control of this collective electron motion, and thus the resultant electrostatic fields, could enable unprecedented control over the spatial-intensity distribution of laser-driven ion acceleration. The results presented in this thesis show that in ultra-thin foils undergoing transparency the electron dynamics are mapped onto the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated that the degree of ellipticity of the laser polarisation defines the spatial-intensity distribution of the proton beam profile and can therefore be used to control it. This demonstration of dynamic optical control of structures within the spatial-intensity distribution of the beam of laser accelerated ions opens a new route to optimising the properties of these promising ion sources.

Book Self generated Magnetic Fields in Intense Laser solid Interactions Relevant to Relativistic Plasma Astrophysics

Download or read book Self generated Magnetic Fields in Intense Laser solid Interactions Relevant to Relativistic Plasma Astrophysics written by Nicholas Mark Henry Butler and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis reports on self-generated magnetic fields in ultra-intense laser interactions with dense plasma and the role that these play in the dynamics of relativistic electrons, and, subsequently, ion acceleration. This includes an investigation of resistive magnetic fields generated within solids and their influence on the transport of multi-mega-Ampere currents of energetic electrons. It also includes investigations of magnetic fields in foils expanded to near-critical density, produced by the Biermann battery and Weibel instability mechanisms. The first part of the thesis explores the transport of relativistic electrons in relatively thick solids, specifically, different allotropes of lithium, silicon and carbon. This is initially explored numerically. Simulations, performed using a three-dimensional hybrid-particle-in-cell codes are used to investigate how the material resistivity-temperature profile affects fast electron transport via self-generated magnetic fields. The degree of lattice order in the material strongly affects electrical resistivity at low temperatures. By considering resistivity-temperature profiles intermediate to those of ordered and disordered arrangements of ions, it is shown that the magnitude and shape of the resistivity-temperature profile at low temperatures strongly affects the growth of self-generated resistive magnetic fields and the onset of resistive transport instabilities. The scaling of these effects to scenarios relevant to the fast ignition scheme for inertial confinement fusion is also discussed. Following this, the influence of the low temperature electrical resistivity on the onset of the resistive filamentation instability is investigated, both experimentally and numerically, in targets consisting of layers of ordered and disordered forms of carbon. It is demonstrated that the thickness of the disordered carbon layer influences the degree of filamentation of the fast electron beam, with strong filamentation produced for thickness of the order of 60μm or greater. Furthermore, it is also shown that the position of the disordered carbon layer (within the layered target) has a minimal influence on the growth of the resistive filamentation instability. The second part of the thesis explores the influence of self-generated magnetic fields on the dynamics of electron motion in ultrathin foil targets expanding to near-critical density and undergoing relativistic induced transparency. The generation of a plasma jet, supported by a self-generated azimuthal magnetic field is explored. The parameters of the jet and its sensitivity to the experimental parameters are characterised. Following this, the onset of Weibel instability-generated magnetic fields is investigated, as diagnosed by the formation of bubble-like structures in the beam of protons accelerated from the foil. The sensitivity of the Weibel-generated magnetic fields to the decompression of the target is explored. An analysis of the scaling of the relativistic plasma jet is presented, exploring the possibility of employing these laboratory-generated structures as analogues of astrophysical relativistic plasma jet phenomena.

Book Applications of Laser Driven Particle Acceleration

Download or read book Applications of Laser Driven Particle Acceleration written by Paul Bolton and published by CRC Press. This book was released on 2018-06-04 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book of its kind to highlight the unique capabilities of laser-driven acceleration and its diverse potential, Applications of Laser-Driven Particle Acceleration presents the basic understanding of acceleration concepts and envisioned prospects for selected applications. As the main focus, this new book explores exciting and diverse application possibilities, with emphasis on those uniquely enabled by the laser driver that can also be meaningful and realistic for potential users. It also emphasises distinction, in the accelerator context, between laser-driven accelerated particle sources and the integrated laser-driven particle accelerator system (all-optical and hybrid versions). A key aim of the book is to inform multiple, interdisciplinary research communities of the new possibilities available and to inspire them to engage with laser-driven acceleration, further motivating and advancing this developing field. Material is presented in a thorough yet accessible manner, making it a valuable reference text for general scientific and engineering researchers who are not necessarily subject matter experts. Applications of Laser-Driven Particle Acceleration is edited by Professors Paul R. Bolton, Katia Parodi, and Jörg Schreiber from the Department of Medical Physics at the Ludwig-Maximilians-Universität München in München, Germany. Features: Reviews the current understanding and state-of-the-art capabilities of laser-driven particle acceleration and associated energetic photon and neutron generation Presents the intrinsically unique features of laser-driven acceleration and particle bunch yields Edited by internationally renowned researchers, with chapter contributions from global experts

Book High Power Laser Matter Interaction

Download or read book High Power Laser Matter Interaction written by Peter Mulser and published by Springer Science & Business Media. This book was released on 2010-07-05 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction and handbook to high-power laser-matter interaction, laser generated plasma, nonlinear waves, particle acceleration, nonlinear optics, nonlinear dynamics, radiation transport, it provides a systematic review of the major results and developments of the past 25 years.

Book Laser Driven Sources of High Energy Particles and Radiation

Download or read book Laser Driven Sources of High Energy Particles and Radiation written by Leonida Antonio Gizzi and published by Springer Nature. This book was released on 2019-09-05 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a selection of articles based on inspiring lectures held at the “Capri” Advanced Summer School, an original event conceived and promoted by Leonida Antonio Gizzi and Ralph Assmann that focuses on novel schemes for plasma-based particle acceleration and radiation sources, and which brings together researchers from the conventional accelerator community and from the high-intensity laser-matter interaction research fields. Training in these fields is highly relevant for ultra-intense lasers and applications, which have enjoyed dramatic growth following the development of major European infrastructures like the Extreme Light Infrastructure (ELI) and the EuPRAXIA project. The articles preserve the tutorial character of the lectures and reflect the latest advances in their respective fields. The volume is mainly intended for PhD students and young researchers getting started in this area, but also for scientists from other fields who are interested in the latest developments. The content will also appeal to radiobiologists and medical physicists, as it includes contributions on potential applications of laser-based particle accelerators.

Book Short Pulse Laser Interactions With Matter  An Introduction

Download or read book Short Pulse Laser Interactions With Matter An Introduction written by Paul Gibbon and published by World Scientific. This book was released on 2005-09-05 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book represents the first comprehensive treatment of the subject, covering the theoretical principles, present experimental status and important applications of short-pulse laser-matter interactions.Femtosecond lasers have undergone dramatic technological advances over the last fifteen years, generating a whole host of new research activities under the theme of “ultrafast science”. The focused light from these devices is so intense that ordinary matter is torn apart within a few laser cycles. This book takes a close-up look at the exotic physical phenomena which arise as a result of this new form of “light-matter” interaction, covering a diverse set of topics including multiphoton ionization, rapid heatwaves, fast particle generation and relativistic self-channeling. These processes are central to a number of exciting new applications in other fields, such as microholography, optical particle accelerators and photonuclear physics.Repository for numerical models described in Chapter 6 can be found at www.fz-juelich.de/zam/cams/plasma/SPLIM/./a

Book Handbook of Spallation Research

Download or read book Handbook of Spallation Research written by Detlef Filges and published by Wiley-VCH. This book was released on 2010-02-01 with total page 787 pages. Available in PDF, EPUB and Kindle. Book excerpt: This detailed and comprehensive reference to spallation -- from the foundations to the latest applications is the only work of its kind and is written by two internationally renowned researchers. Clearly divided into three parts, it begins with the basic principles, while the second part describes the proton-nucleus and proton-matter experiments so-called thin and thick target experiments in terms of secondary particle production as hadrons, pions, muons, photons, electrons, light and intermediate masses, isotope production, heating and energy deposition and materials damage. Many of the experiments are associated with studies, investigations and the construction of spallation neutron sources since 1975 with emphasis on the most recent developments. The final part on technology and applications describes the various engineering problems associated with high intensity neutron spallation sources, ATW's, the needed accelerator systems, material and neutron issues, and high energy neutron source shielding aspects. A must-have for engineers and physicists working in or entering this field.

Book A Superintense Laser Plasma Interaction Theory Primer

Download or read book A Superintense Laser Plasma Interaction Theory Primer written by Andrea Macchi and published by Springer Science & Business Media. This book was released on 2013-01-24 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: The continuous trend towards higher and higher laser intensities has opened the way to new physical regimes and advanced applications of laser-plasma interactions, thus stimulating novel connections with ultrafast optics, astrophysics, particle physics, and biomedical applications. This book is primarily oriented towards students and young researchers who need to acquire rapidly a basic knowledge of this active and rapidly changing research field. To this aim, the presentation is focused on a selection of basic models and inspiring examples, and includes topics which emerged recently such as ion acceleration, "relativistic engineering" and radiation friction. The contents are presented in a self-contained way assuming only a basic knowledge of classical electrodynamics, mechanics and relativistic dynamics at the undergraduate (Bachelor) level, without requiring any previous knowledge of plasma physics. Hence, the book may serve in several ways: as a compact textbook for lecture courses, as a short and accessible introduction for the newcomer, as a quick reference for the experienced researcher, and also as an introduction to some nonlinear mathematical methods through examples of their application to laser-plasma modeling.

Book Lasers and Nuclei

    Book Details:
  • Author : Heinrich Schwoerer
  • Publisher : Springer Science & Business Media
  • Release : 2006-05-22
  • ISBN : 3540302719
  • Pages : 258 pages

Download or read book Lasers and Nuclei written by Heinrich Schwoerer and published by Springer Science & Business Media. This book was released on 2006-05-22 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lasers and Nuclei describes the generation of high-energy-particle radiation with high-intensity lasers and its application to nuclear science. A basic introduction to laser--matter interaction at high fields is complemented by detailed presentations of state of the art laser particle acceleration and elementary laser nuclear experiments. The text also discusses future applications of lasers in nuclear science, for example in nuclear astrophysics, isotope generation, nuclear fuel physics and proton and neutron imaging.

Book The Interaction of High Power Lasers with Plasmas

Download or read book The Interaction of High Power Lasers with Plasmas written by Shalom Eliezer and published by CRC Press. This book was released on 2002-08-16 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Interaction of High-Power Lasers with Plasmas provides a thorough self-contained discussion of the physical processes occurring in laser-plasma interactions, including a detailed review of the relevant plasma and laser physics. The book analyzes laser absorption and propagation, electron transport, and the relevant plasma waves in detail. It al

Book Particle Detectors

    Book Details:
  • Author : Hermann Kolanoski
  • Publisher : Oxford University Press
  • Release : 2020-06-30
  • ISBN : 0191899232
  • Pages : 949 pages

Download or read book Particle Detectors written by Hermann Kolanoski and published by Oxford University Press. This book was released on 2020-06-30 with total page 949 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the fundamentals of particle detectors as well as their applications. Detector development is an important part of nuclear, particle and astroparticle physics, and through its applications in radiation imaging, it paves the way for advancements in the biomedical and materials sciences. Knowledge in detector physics is one of the required skills of an experimental physicist in these fields. The breadth of knowledge required for detector development comprises many areas of physics and technology, starting from interactions of particles with matter, gas- and solid-state physics, over charge transport and signal development, to elements of microelectronics. The book's aim is to describe the fundamentals of detectors and their different variants and implementations as clearly as possible and as deeply as needed for a thorough understanding. While this comprehensive opus contains all the materials taught in experimental particle physics lectures or modules addressing detector physics at the Master's level, it also goes well beyond these basic requirements. This is an essential text for students who want to deepen their knowledge in this field. It is also a highly useful guide for lecturers and scientists looking for a starting point for detector development work.

Book The Euroschool on Exotic Beams   Vol  5

Download or read book The Euroschool on Exotic Beams Vol 5 written by Christoph Scheidenberger and published by Springer. This book was released on 2018-04-04 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the fifth volume in a series of Lecture Notes based on the highly successful Euro Summer School on Exotic Beams. The aim of these notes is to provide a thorough introduction to radioactive ion-beam physics at the level of graduate students and young postdocs starting out in the field. Each volume covers a range of topics from nuclear theory to experiment and applications. Vol I has been published as LNP 651, Vol II as LNP 700, Vol. III as LNP 764 and Vol. IV as LNP 879.

Book Laser Driven Particle Acceleration Towards Radiobiology and Medicine

Download or read book Laser Driven Particle Acceleration Towards Radiobiology and Medicine written by Antonio Giulietti and published by Springer. This book was released on 2016-05-04 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the new method of laser-driven acceleration for application to radiation biophysics and medicine. It provides multidisciplinary contributions from world leading scientist in order to assess the state of the art of innovative tools for radiation biology research and medical applications of ionizing radiation. The book contains insightful contributions on highly topical aspects of spatio-temporal radiation biophysics, evolving over several orders of magnitude, typically from femtosecond and sub-micrometer scales. Particular attention is devoted to the emerging technology of laser-driven particle accelerators and their application to spatio-temporal radiation biology and medical physics, customization of non-conventional and selective radiotherapy and optimized radioprotection protocols.

Book Atoms  Solids  and Plasmas in Super Intense Laser Fields

Download or read book Atoms Solids and Plasmas in Super Intense Laser Fields written by Dimitri Batani and published by Springer Science & Business Media. This book was released on 2001-09-30 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the 30th Course of the International School of Quantum Electronics on Atoms, Solids and Plasmas in Super-Intense Laser Fields, held 8-14 July, in Erice, Sicily

Book Frontiers in High Energy Density Physics

Download or read book Frontiers in High Energy Density Physics written by National Research Council and published by National Academies Press. This book was released on 2003-05-11 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.