Download or read book Invitation to Linear Operators written by Takayuki Furuta and published by CRC Press. This book was released on 2001-07-26 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most books on linear operators are not easy to follow for students and researchers without an extensive background in mathematics. Self-contained and using only matrix theory, Invitation to Linear Operators: From Matricies to Bounded Linear Operators on a Hilbert Space explains in easy-to-follow steps a variety of interesting recent results on linear operators on a Hilbert space. The author first states the important properties of a Hilbert space, then sets out the fundamental properties of bounded linear operators on a Hilbert space. The final section presents some of the more recent developments in bounded linear operators.
Download or read book Partial Differential Equations III written by M. A. Shubin and published by Springer Verlag. This book was released on 1991 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two general questions regarding partial differential equations are explored in detail in this volume of the Encyclopaedia. The first is the Cauchy problem, and its attendant question of well-posedness (or correctness). The authors address this question in the context of PDEs with constant coefficients and more general convolution equations in the first two chapters. The third chapter extends a number of these results to equations with variable coefficients. The second topic is the qualitative theory of second order linear PDEs, in particular, elliptic and parabolic equations. Thus, the second part of the book is primarily a look at the behavior of solutions of these equations. There are versions of the maximum principle, the Phragmen-Lindel]f theorem and Harnack's inequality discussed for both elliptic and parabolic equations. The book is intended for readers who are already familiar with the basic material in the theory of partial differential equations.
Download or read book An Invitation to C Algebras written by W. Arveson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to C*-algebras and their representations on Hilbert spaces. We have tried to present only what we believe are the most basic ideas, as simply and concretely as we could. So whenever it is convenient (and it usually is), Hilbert spaces become separable and C*-algebras become GCR. This practice probably creates an impression that nothing of value is known about other C*-algebras. Of course that is not true. But insofar as representations are con cerned, we can point to the empirical fact that to this day no one has given a concrete parametric description of even the irreducible representations of any C*-algebra which is not GCR. Indeed, there is metamathematical evidence which strongly suggests that no one ever will (see the discussion at the end of Section 3. 4). Occasionally, when the idea behind the proof of a general theorem is exposed very clearly in a special case, we prove only the special case and relegate generalizations to the exercises. In effect, we have systematically eschewed the Bourbaki tradition. We have also tried to take into account the interests of a variety of readers. For example, the multiplicity theory for normal operators is contained in Sections 2. 1 and 2. 2. (it would be desirable but not necessary to include Section 1. 1 as well), whereas someone interested in Borel structures could read Chapter 3 separately. Chapter I could be used as a bare-bones introduction to C*-algebras. Sections 2.
Download or read book An Invitation to Unbounded Representations of Algebras on Hilbert Space written by Konrad Schmüdgen and published by Springer Nature. This book was released on 2020-07-28 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides an introduction to representations of general ∗-algebras by unbounded operators on Hilbert space, a topic that naturally arises in quantum mechanics but has so far only been properly treated in advanced monographs aimed at researchers. The book covers both the general theory of unbounded representation theory on Hilbert space as well as representations of important special classes of ∗-algebra, such as the Weyl algebra and enveloping algebras associated to unitary representations of Lie groups. A broad scope of topics are treated in book form for the first time, including group graded ∗-algebras, the transition probability of states, Archimedean quadratic modules, noncommutative Positivstellensätze, induced representations, well-behaved representations and representations on rigged modules. Making advanced material accessible to graduate students, this book will appeal to students and researchers interested in advanced functional analysis and mathematical physics, and with many exercises it can be used for courses on the representation theory of Lie groups and its application to quantum physics. A rich selection of material and bibliographic notes also make it a valuable reference.
Download or read book Perturbation theory for linear operators written by Tosio Kato and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book An Invitation to Operator Theory written by Yuri A. Abramovich and published by . This book was released on 1900 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive and reader-friendly exposition of the theory of linear operators on Banach spaces and Banach lattices using their topological and order structures and properties. Abramovich and Aliprantis give a unique presentation that includes many new and recent advances in operator theory and brings together results that are spread over the vast literature. For instance, invariant subspaces of positive operators and the Daugavet equation are presented in monograph form for the first time. The authors keep the discussion self-contained and use exercises to achieve this goal. The book contains over 600 exercises to help students master the material developed in the text. The exercises are of varying degrees of difficulty and play an important and useful role in the presentation. They help to free the proofs of the main results of technical details, which are secondary to the principal ideas, but provide students with accurate and complete accounts of how such details ought to be worked out. The exercises also contain a considerable amount of additional material, and among them there are many well-known results whose proofs are not readily available elsewhere. Prerequisites are the standard introductory graduate courses in real analysis, general topology, measure theory, and functional analysis. The volume is suitable for graduate or advanced courses in operator theory, real analysis, integration theory, measure theory, function theory, and functional analysis. It will also be of great interest to researchers in mathematics, as well as in physics, economics, finance, engineering, and other related areas. The companion volume, Problems in Operator Theory, containing complete solutions to all exercises in An Invitation to Operator Theory, is available from the AMS as Volume 51 in the Graduate Studies in Mathematics series.
Download or read book Composition Operators written by Joel H. Shapiro and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of composition operators links some of the most basic questions you can ask about linear operators with beautiful classical results from analytic-function theory. The process invests old theorems with new mean ings, and bestows upon functional analysis an intriguing class of concrete linear operators. Best of all, the subject can be appreciated by anyone with an interest in function theory or functional analysis, and a background roughly equivalent to the following twelve chapters of Rudin's textbook Real and Complex Analysis [Rdn '87]: Chapters 1-7 (measure and integra tion, LP spaces, basic Hilbert and Banach space theory), and 10-14 (basic function theory through the Riemann Mapping Theorem). In this book I introduce the reader to both the theory of composition operators, and the classical results that form its infrastructure. I develop the subject in a way that emphasizes its geometric content, staying as much as possible within the prerequisites set out in the twelve fundamental chapters of Rudin's book. Although much of the material on operators is quite recent, this book is not intended to be an exhaustive survey. It is, quite simply, an invitation to join in the fun. The story goes something like this.
Download or read book An Invitation to Applied Category Theory written by Brendan Fong and published by Cambridge University Press. This book was released on 2019-07-18 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.
Download or read book An Invitation to Statistics in Wasserstein Space written by Victor M. Panaretos and published by Springer Nature. This book was released on 2020-03-10 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book presents the key aspects of statistics in Wasserstein spaces, i.e. statistics in the space of probability measures when endowed with the geometry of optimal transportation. Further to reviewing state-of-the-art aspects, it also provides an accessible introduction to the fundamentals of this current topic, as well as an overview that will serve as an invitation and catalyst for further research. Statistics in Wasserstein spaces represents an emerging topic in mathematical statistics, situated at the interface between functional data analysis (where the data are functions, thus lying in infinite dimensional Hilbert space) and non-Euclidean statistics (where the data satisfy nonlinear constraints, thus lying on non-Euclidean manifolds). The Wasserstein space provides the natural mathematical formalism to describe data collections that are best modeled as random measures on Euclidean space (e.g. images and point processes). Such random measures carry the infinite dimensional traits of functional data, but are intrinsically nonlinear due to positivity and integrability restrictions. Indeed, their dominating statistical variation arises through random deformations of an underlying template, a theme that is pursued in depth in this monograph.
Download or read book Elements of Operator Theory written by Carlos S. Kubrusly and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: {\it Elements of Operatory Theory} is aimed at graduate students as well as a new generation of mathematicians and scientists who need to apply operator theory to their field. Written in a user-friendly, motivating style, fundamental topics are presented in a systematic fashion, i.e., set theory, algebraic structures, topological structures, Banach spaces, Hilbert spaces, culminating with the Spectral Theorem, one of the landmarks in the theory of operators on Hilbert spaces. The exposition is concept-driven and as much as possible avoids the formula-computational approach. Key features of this largely self-contained work include: * required background material to each chapter * fully rigorous proofs, over 300 of them, are specially tailored to the presentation and some are new * more than 100 examples and, in several cases, interesting counterexamples that demonstrate the frontiers of an important theorem * over 300 problems, many with hints * both problems and examples underscore further auxiliary results and extensions of the main theory; in this non-traditional framework, the reader is challenged and has a chance to prove the principal theorems anew This work is an excellent text for the classroom as well as a self-study resource for researchers. Prerequisites include an introduction to analysis and to functions of a complex variable, which most first-year graduate students in mathematics, engineering, or another formal science have already acquired. Measure theory and integration theory are required only for the last section of the final chapter.
Download or read book Problems in Operator Theory written by Yuri A. Abramovich and published by American Mathematical Soc.. This book was released on 2002 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains complete solutions to the more than six hundred exercises in the authors' book: Invitation to operator theory--foreword.
Download or read book An Introduction to Hilbert Space written by N. Young and published by Cambridge University Press. This book was released on 1988-07-21 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is an introduction to the theory of Hilbert space and its applications. The notion of Hilbert space is central in functional analysis and is used in numerous branches of pure and applied mathematics. Dr Young has stressed applications of the theory, particularly to the solution of partial differential equations in mathematical physics and to the approximation of functions in complex analysis. Some basic familiarity with real analysis, linear algebra and metric spaces is assumed, but otherwise the book is self-contained. It is based on courses given at the University of Glasgow and contains numerous examples and exercises (many with solutions). Thus it will make an excellent first course in Hilbert space theory at either undergraduate or graduate level and will also be of interest to electrical engineers and physicists, particularly those involved in control theory and filter design.
Download or read book Nonstandard Analysis and Its Applications written by Nigel Cutland and published by Cambridge University Press. This book was released on 1988-09-30 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is an introduction to non-standard analysis and to its many applications. Non standard analysis (NSA) is a subject of great research interest both in its own right and as a tool for answering questions in subjects such as functional analysis, probability, mathematical physics and topology. The book arises from a conference held in July 1986 at the University of Hull which was designed to provide both an introduction to the subject through introductory lectures, and surveys of the state of research. The first part of the book is devoted to the introductory lectures and the second part consists of presentations of applications of NSA to dynamical systems, topology, automata and orderings on words, the non- linear Boltzmann equation and integration on non-standard hulls of vector lattices. One of the book's attractions is that a standard notation is used throughout so the underlying theory is easily applied in a number of different settings. Consequently this book will be ideal for graduate students and research mathematicians coming to the subject for the first time and it will provide an attractive and stimulating account of the subject.
Download or read book Invitation to the Mathematics of Fermat Wiles written by Yves Hellegouarch and published by Elsevier. This book was released on 2001-09-24 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assuming only modest knowledge of undergraduate level math, Invitation to the Mathematics of Fermat-Wiles presents diverse concepts required to comprehend Wiles' extraordinary proof. Furthermore, it places these concepts in their historical context. This book can be used in introduction to mathematics theories courses and in special topics courses on Fermat's last theorem. It contains themes suitable for development by students as an introduction to personal research as well as numerous exercises and problems. However, the book will also appeal to the inquiring and mathematically informed reader intrigued by the unraveling of this fascinating puzzle. Rigorously presents the concepts required to understand Wiles' proof, assuming only modest undergraduate level math Sets the math in its historical context Contains several themes that could be further developed by student research and numerous exercises and problems Written by Yves Hellegouarch, who himself made an important contribution to the proof of Fermat's last theorem
Download or read book Lectures on Numerical Radius Inequalities written by Pintu Bhunia and published by Springer Nature. This book was released on 2022-11-18 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a self-contained advanced monograph on inequalities involving the numerical radius of bounded linear operators acting on complex Hilbert spaces. The study of numerical range and numerical radius has a long and distinguished history starting from the Rayleigh quotients used in the 19th century to nowadays applications in quantum information theory and quantum computing. This monograph is intended for use by both researchers and graduate students of mathematics, physics, and engineering who have a basic background in functional analysis and operator theory. The book provides several challenging problems and detailed arguments for the majority of the results. Each chapter ends with some notes about historical views or further extensions of the topics. It contains a bibliography of about 180 items, so it can be used as a reference book including many classical and modern numerical radius inequalities.
Download or read book Operator and Norm Inequalities and Related Topics written by Richard M. Aron and published by Springer Nature. This book was released on 2022-08-10 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inequalities play a central role in mathematics with various applications in other disciplines. The main goal of this contributed volume is to present several important matrix, operator, and norm inequalities in a systematic and self-contained fashion. Some powerful methods are used to provide significant mathematical inequalities in functional analysis, operator theory and numerous fields in recent decades. Some chapters are devoted to giving a series of new characterizations of operator monotone functions and some others explore inequalities connected to log-majorization, relative operator entropy, and the Ando-Hiai inequality. Several chapters are focused on Birkhoff–James orthogonality and approximate orthogonality in Banach spaces and operator algebras such as C*-algebras from historical perspectives to current development. A comprehensive account of the boundedness, compactness, and restrictions of Toeplitz operators can be found in the book. Furthermore, an overview of the Bishop-Phelps-Bollobás theorem is provided. The state-of-the-art of Hardy-Littlewood inequalities in sequence spaces is given. The chapters are written in a reader-friendly style and can be read independently. Each chapter contains a rich bibliography. This book is intended for use by both researchers and graduate students of mathematics, physics, and engineering.
Download or read book An Operator Theory Problem Book written by Mohammed Hichem Mortad and published by World Scientific. This book was released on 2018-10-15 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for third and fourth year university mathematics students (and Master students) as well as lecturers and tutors in mathematics and anyone who needs the basic facts on Operator Theory (e.g. Quantum Mechanists). The main setting for bounded linear operators here is a Hilbert space. There is, however, a generous part on General Functional Analysis (not too advanced though). There is also a chapter on Unbounded Closed Operators.The book is divided into two parts. The first part contains essential background on all of the covered topics with the sections: True or False Questions, Exercises, Tests and More Exercises. In the second part, readers may find answers and detailed solutions to the True or False Questions, Exercises and Tests.Another virtue of the book is the variety of the topics and the exercises and the way they are tackled. In many cases, the approaches are different from what is known in the literature. Also, some very recent results from research papers are included.