EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Investigation on Drought Tolerance in Maize  Zea Mays L   A Genetic and Biochemical Appraisal

Download or read book Investigation on Drought Tolerance in Maize Zea Mays L A Genetic and Biochemical Appraisal written by S. R. Pinnamaneni and published by . This book was released on 1998 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Investigation on Drought Tolerance in Maize

Download or read book Investigation on Drought Tolerance in Maize written by Babu P. and published by . This book was released on 1992 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Drought Stress in Maize  Zea mays L

Download or read book Drought Stress in Maize Zea mays L written by Muhammad Aslam and published by Springer. This book was released on 2015-11-20 with total page 79 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on early germination, one of maize germplasm most important strategies for adapting to drought-induced stress. Some genotypes have the ability to adapt by either reducing water losses or by increasing water uptake. Drought tolerance is also an adaptive strategy that enables crop plants to maintain their normal physiological processes and deliver higher economical yield despite drought stress. Several processes are involved in conferring drought tolerance in maize: the accumulation of osmolytes or antioxidants, plant growth regulators, stress proteins and water channel proteins, transcription factors and signal transduction pathways. Drought is one of the most detrimental forms of abiotic stress around the world and seriously limits the productivity of agricultural crops. Maize, one of the leading cereal crops in the world, is sensitive to drought stress. Maize harvests are affected by drought stress at different growth stages in different regions. Numerous events in the life of maize crops can be affected by drought stress: germination potential, seedling growth, seedling stand establishment, overall growth and development, pollen and silk development, anthesis silking interval, pollination, and embryo, endosperm and kernel development. Though every maize genotype has the ability to avoid or withstand drought stress, there is a concrete need to improve the level of adaptability to drought stress to address the global issue of food security. The most common biological strategies for improving drought stress resistance include screening available maize germplasm for drought tolerance, conventional breeding strategies, and marker-assisted and genomic-assisted breeding and development of transgenic maize. As a comprehensive understanding of the effects of drought stress, adaptive strategies and potential breeding tools is the prerequisite for any sound breeding plan, this brief addresses these aspects.

Book Drought Tolerance Traits in Maize  Zea Mays  at the Early Vegetative Growth Stage

Download or read book Drought Tolerance Traits in Maize Zea Mays at the Early Vegetative Growth Stage written by Abdalla I. Ibrahim and published by . This book was released on 2017 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Early seedling vigor and juvenile vegetative growth are important traits that allow the strong establishment of plants and access to nutrients and water, providing competition against weeds, and allowing mechanical cultivation in production systems that do not use herbicides. Drought stress at this early growth stage may be lethal or damaging. We used to the plant Digital Biomass as predicted from digital images to track plant growth under both well-watered and water-stressed conditions. To achieve these goals, we developed a manual imaging system that allowed us to track the plant growth over a period of 32 days. We imaged 30,36 plants representing 449 inbred lines daily from 13 to 32 days after planting with both a top and a side image. The drought treatment started 23 days after planting by completely withholding water from the water-stress treatment. Using Integrated Analysis Platform (IAP) software, we extracted 137 traits from the images including plant architectural traits and color traits. Phenotypic analysis of several traits showed variability across inbreds. Digital Biomass, for example, showed a great variability across inbreds with a 6.6-fold difference at the beginning of the experiment. Digital Biomass, estimated from the top and side images, was shown to be a good measure of plant vigor and strongly correlated with plant shoot weight at harvest. Vigorous seedling utilized more water, reflecting their ability to take advantage of available resources. The value of image-based traits of young plants was evaluated as a predictive tool for adult phenotypes grown in the field. Weak to moderate correlations were obtained between Digital Biomass at the seedling stage, with r-squared values of -0.35, -0.31 for GDD to Anthesis, and GDD to Silking respectively. The correlation between early maize growth and flowering time may suggest a common genetic control of growth and development of both stages with some possible genes with pleiotropic effects. To identify genomic regions associated with the several phenotypic traits, we utilized a dataset of 436,576 SNP markers to conduct Genome-wide Association (GWAS) using the GAPIT package in R. Several candidate genes were identified for growth rate and total leaf area at specific growth stages, as well as for other correlated traits. GWAS of image-derived plant color traits detected genes associated with plant pigments such as anthocyanin and chlorophyll, which confirms earlier reports on the utility of plant imaging in identifying plant pigments. We wanted to test whether growth, as measured by Digital Biomass, was controlled by a fixed or a dynamic set of genes, so we carried out GWAS analysis of Digital Biomass for each day as a separate phenotype. Results have shown that variation for early vegetative growth in maize is controlled by a dynamic set of genes over time, highlighting the importance of repeated measurement over time in GWAS and QTL studies designed to characterize the genetic architecture of plant development. The analysis of the drought-stressed plants showed variability in different drought tolerance traits ranging from 1.2 to 12.2-fold difference. The several measured traits included traits such as 1) leaf expansion sensitivity to water content and traits related to the ability to recover after drought such as 2) surviving green tissue after drought stress, 3) water use efficiency, and 4) growth rate after recovery with. No or weak correlations were found between the plant's ability to tolerate drought and its ability to recover. Photosynthesis Efficiency measured as Fv/Fm on a subset of 140 plants at three time-points during drought stress, showed that photosynthetic efficiency is less sensitive to drought stress than leaf growth. The candidate genes identified in this study, as well as correlations with field agronomic traits, may provide an insight that helps future understanding of the genetic control of biomass-related traits under both well-watered and drought stress conditions.

Book Drought Adaptation in Cereals

Download or read book Drought Adaptation in Cereals written by Jean-Marcel Ribaut and published by CRC Press. This book was released on 2006-09-08 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to best improve yield in cereal plants—even in dry conditions The impact of drought on crop production can be economically devastating. Drought Adaptation in Cereals provides a comprehensive review of the latest research on the tolerance of cereal crops to water-limited conditions. Renowned experts extensively describe basic concepts and cutting-edge research results to clearly reveal all facets of drought adaptation in cereals. More than simply a fine reference for plant biology and plant improvement under water-limited conditions, this book spotlights the most relevant biological approaches from plant phenotyping to functional genomics. The need to understand plant response to the lack of water is integral to forming strategies to best manage crops. Drought Adaptation in Cereals starts by offering an overview of the biological basis and defines the adaptive mechanisms found in plants under water-limited conditions. Different approaches are presented to provide understanding of plant genetics basics and plant breeding, including phenotyping, physiology, and biotechnology. The book details drought adaptation mechanisms at the cellular, organ, and entire plant levels, focusing on plant metabolism and gene functions. This resource is extensively referenced and contains tables, charts, and figures to clearly present data and enhance understanding. After a foreword by J. O'Toole and a prologue by A. Blum, Drought Adaptation in Cereals presents a full spectrum of informative topics from other internationally respected scientists. These include: drought’s economic impact (P. Heisey) genotype-by-environment interactions (M. Cooper) secondary traits for drought adaptation (P. Monneveux) leaf growth (F. Tardieu) carbon isotope discrimination (T. Condon) drought adaptation in barley (M. Sorrells), maize (M. Sawkins), rice (R. Lafitte), sorghum (A. Borrell) and wheat (M. Reynolds) carbohydrate metabolism (A. Tiessen) the role of abscisic acid (T. Setter) protection mechanisms and stress proteins (L. Mtwisha) genetic basis of ion homeostasis and water deficit (H. Bohnert) transcriptional factors (K. Yamaguchi-Shinozaki) resurrection plants (D. Bartels) Drought Adaptation in Cereals is a unique, vital reference for scientists, educators, and students in plant biology, agronomy, and natural resources management.

Book Handbook of Maize  Its Biology

    Book Details:
  • Author : Jeff L. Bennetzen
  • Publisher : Springer Science & Business Media
  • Release : 2008-12-25
  • ISBN : 0387794182
  • Pages : 593 pages

Download or read book Handbook of Maize Its Biology written by Jeff L. Bennetzen and published by Springer Science & Business Media. This book was released on 2008-12-25 with total page 593 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Maize: Its Biology centers on the past, present and future of maize as a model for plant science research and crop improvement. The book includes brief, focused chapters from the foremost maize experts and features a succinct collection of informative images representing the maize germplasm collection.

Book Molecular Breeding in Wheat  Maize and Sorghum

Download or read book Molecular Breeding in Wheat Maize and Sorghum written by Mohammad Anwar Hossain and published by CABI. This book was released on 2021-06-30 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: The global population is projected to reach almost 10 billion by 2050, and food and feed production will need to increase by 70%. Wheat, maize and sorghum are three key cereals which provide nutrition for the majority of the world's population. Their production is affected by various abiotic stresses which cause significant yield losses. The effects of climate change also increase the frequency and severity of such abiotic stresses. Molecular breeding technologies offer real hope for improving crop yields. Although significant progress has been made over the last few years, there is still a need to bridge the large gap between yields in the most favorable and most stressful conditions.

Book Transcription Factors for Abiotic Stress Tolerance in Plants

Download or read book Transcription Factors for Abiotic Stress Tolerance in Plants written by Shabir Hussain Wani and published by Academic Press. This book was released on 2020-08-05 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transcription Factors for Abiotic Stress Tolerance in Plants highlights advances in the understanding of the regulatory network that impacts plant health and production, providing important insights for improving plant resistance. Plant production worldwide is suffering serious losses due to widespread abiotic stresses increasing as a result of global climate change. Frequently more than one abiotic stress can occur at once, for example extreme temperature and osmotic stress, which increases the complexity of these environmental stresses. Modern genetic engineering technologies are one of the promising tools for development of plants with efficient yields and resilience to abiotic stresses. Hence deciphering the molecular mechanisms and identifying the abiotic stress associated genes that control plant response to abiotic stresses is a vital requirement in developing plants with increased abiotic stress resilience. Addressing the various complexities of transcriptional regulation, this book includes chapters on cross talk and central regulation, regulatory networks, the role of DOF, WRKY and NAC transcription factors, zinc finger proteins, CRISPR/CAS9-based genome editing, C-Repeat (CRT) binding factors (CBFs)/Dehydration responsive element binding factors (DREBs) and factors impacting salt, cold and phosphorous stress levels, as well as transcriptional modulation of genes involved in nanomaterial-plant interactions. Transcription Factors for Abiotic Stress Tolerance in Plants provides a useful reference by unravelling the transcriptional regulatory networks in plants. Researchers and advanced students will find this book a valuable reference for understanding this vital area. Discusses abiotic stress tolerance and adaptive mechanisms based on the findings generated by unlocking the transcriptional regulatory network in plants Presents various kinds of regulatory gene networks identified for drought, salinity, cold and heat stress in plants Highlights urgent climate change issues in plants and their mitigation using modern biotechnological tools including genome editing.

Book Stable Isotopes in Ecological Research

Download or read book Stable Isotopes in Ecological Research written by P.W. Rundel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis of stable isotope ratios represents one of the most exciting new technical advances in environmental sciences. In this book, leading experts offer the first survey of applications of stable isotope analysis to ecological research. Central topics are - plant physiology studies - food webs and animal metabolism - biogeochemical fluxes. Extensive coverage is given to natural isotopes of carbon, hydrogen, oxygen, nitrogen, sulfur, and strontium in both terrestrial and marine ecosystems. Ecologists of diverse research interests, as well as agronomists, anthropologists, and geochemists will value this overview for its wealth of information on theoretical background, experimental approaches, and technical design of studies utilizing stable isotope ratios.

Book Maize for Biological Research

Download or read book Maize for Biological Research written by William F. Sheridan and published by . This book was released on 1982 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Physiological  molecular and genetic perspectives of environmental stress response in plants

Download or read book Physiological molecular and genetic perspectives of environmental stress response in plants written by Pasala Ratnakumar and published by Frontiers Media SA. This book was released on 2023-07-04 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Genetically Engineered Crops

    Book Details:
  • Author : National Academies of Sciences, Engineering, and Medicine
  • Publisher : National Academies Press
  • Release : 2017-01-28
  • ISBN : 0309437385
  • Pages : 607 pages

Download or read book Genetically Engineered Crops written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2017-01-28 with total page 607 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.

Book Agrindex

    Book Details:
  • Author :
  • Publisher :
  • Release : 1995
  • ISBN :
  • Pages : 1094 pages

Download or read book Agrindex written by and published by . This book was released on 1995 with total page 1094 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Transgenic Crop Plants

    Book Details:
  • Author : Chittaranjan Kole
  • Publisher : Springer Science & Business Media
  • Release : 2010-01-13
  • ISBN : 3642048099
  • Pages : 329 pages

Download or read book Transgenic Crop Plants written by Chittaranjan Kole and published by Springer Science & Business Media. This book was released on 2010-01-13 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Development of transgenic crop plants, their utilization for improved agriculture, health, ecology and environment and their socio-political impacts are currently important fields in education, research and industries and also of interest to policy makers, social activists and regulatory and funding agencies. This work prepared with a class-room approach on this multidisciplinary subject will fill an existing gap and meet the requirements of such a broad section of readers. Volume 1 with ten chapters contributed by 31 eminent scientists from nine countries deliberates on the basic concepts, strategies and tools for development of transgenic crop plants, including topics such as: explants used for the generation of transgenic plants, gene transfer methods, organelle transformation, selection and screening strategies, expression and stability of transgenes, silencing undesirable genes, transgene integration, biosynthesis and biotransformation and metabolic engineering of pathways and gene discovery.

Book Quantitative Genetics in Maize Breeding

Download or read book Quantitative Genetics in Maize Breeding written by Arnel R. Hallauer and published by Springer Science & Business Media. This book was released on 2010-09-28 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. José B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of São Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, São Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm