EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Investigation of the Petrophysical Properties of Unconventional Rocks Using Multiscale Network Modeling

Download or read book Investigation of the Petrophysical Properties of Unconventional Rocks Using Multiscale Network Modeling written by Ayaz Mehmani and published by . This book was released on 2015 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unconventional reservoirs, specifically carbonates, tight gas sandstone and shale gas formations, provide significant potential for the growing world energy demand. However, the positive prospects of these reserves are hampered by considerable uncertainty in estimating their production. Reliable petrophysical models of these media can help reduce the uncertainty in their development. Pore-network models are cost-efficient representations of a porous medium's pore structure that allow prediction of its macroscopic properties. In this effort, the topology and fluid physics of pores from various scales are integrated into a single-entity three-dimensional (3D) unstructured pore-network model. We start with the simplest shale matrix gas flow model that incorporates pores from nanometer and micrometer scales, but has a connectivity resembling conventional rocks. We quantify the apparent permeability of these networks with relevant, pore size-dependent physical models applied to both scales and compare the results with the continuum no slip boundary condition assumption. The discrepancy between the two can run over several orders of magnitude and grows with the fraction of nanopores and the width of the overall pore size distribution. We next attempt to create more realistic network models, closer to the true topology of the studied unconventional rocks. Workflows for integration of nanometer and micrometer pore structures are then developed for deterministic, geologically informed, process-based and image-based approaches in various unconventional scenarios. We perform a systematic forward analysis of the applicability of tracer breakthrough profiles (TBPs) in revealing the pore structure of tight gas sandstone and carbonate formations. The following features are modeled via 3D multiscale networks: microporosity within dissolved grains and pore-filling clay, cementation in the absence and presence of microporosity (each classified into uniform, pore-preferred, and throat-preferred modes), layering, and vug and microcrack inclusion. A priori knowledge of the extent and location of each process is assumed known. In general, significant qualitative perturbation of the TBPs is observed for uniform and throat-preferred cementation. Layering parallel to the fluid flow direction has a considerable impact on TBPs whereas layering perpendicular to flow does not. Microcrack orientation has a minor effect in perturbing TBPs. In most scenarios TBPs show negligible qualitative sensitivity to the fraction of micropores present. The exception is the case when macropores and pore-filling micropores have equivalent flux contributions. A quantitative parameterization of sensitivity is not conducted; an example of such is measuring the perturbations in pore-volumes associated with the breakthrough profile peaks, has not been conducted. Similar to tracer breakthrough profiles in the context of characterizing heterogeneous porous media in core scale, nitrogen sorption hysteresis is investigated for characterizing pore structure of mudrocks. Three network types are introduced to represent their multiscale pore topology; specifically: regular (Type 1), series (Type 2) and parallel (Type 3). We conclude that, in appropriate size ranges, sorption hysteresis can distinguish the three types whereas permeability hysteresis can only separate parallel from series and regular. Furthermore, the simulations show that sorption hysteresis is sensitive to compaction/cementation (closing of throats) in all network types, whereas permeability hysteresis is sensitive to the diagenesis in parallel networks only. A quantitative parameterization of the sensitivity, such as measuring the area enclosed by the hysteresis curve, was not conducted. Molecular diffusion is an important mechanism for hydrocarbon transport within matrix as well as between matrix pores and hydraulic fractures in unconventional shale production. The diffusion coefficient is also an essential parameter in two-dimensional (2D) nuclear magnetic resonance (NMR) map interpretations. However, molecular diffusion in the micro- and nanometer scale pore networks of unconventional shale rocks remain poorly understood. We attempt to link the restricted diffusion coefficient to pore-scale characteristics of shale gas media. A random walk algorithm with discrete time steps is implemented to investigate the effects of pore-throat ratio (the ratio of pore-body radius to pore-throat radius), length ratio (the ratio of throat length to pore radius), pore shape and topology. It is concluded that, at an equal surface-to-volume ratio, diffusion coefficient increases in pores with higher angularity. The effects of pore-throat radius ratio and length ratio are explicitly modeled in 3D structured regular lattices. Results indicate that, up to pore-throat radius ratios of 5, restricted diffusion is considerable in lattices with zero length throats. Furthermore, restricted diffusion decreases with the increase in length ratio. To reduce computational costs, a statistical method is developed to render simulating the effects of connectivity and pore size distribution on 3D unstructured multiscale networks feasible. Finally, we perform a preliminary assessment of the fidelity of the multiscale process-based and image-based approaches in a case study conducted on the Wilcox tight gas sandstone. A novel workflow that combines the multiscale process-based network model with petrographic analysis is developed. This methodology utilizes petrographic information (grain size distribution and sorting, cement type and thickness, microporosity types and fractions, burial sequence) to enable the prediction of the flow properties of the medium in several burial stages throughout the paragenesis of the Wilcox formation. Given the 100 -1000 times scale difference between micropores and macropores and the resultant computational costs, an upscaling scheme is proposed for the microporous clusters in the process-based algorithm. The upscaling presently does not work for the image-based modeling because of the irregularity of microporous regions. We observe discrepancy between the simulated and experimental mercury injection capillary pressure curve and use it to recommend future improvements to the workflow. In this case study, micropores are crucial in contributing to the flow path; therefore, their surface chemistry as well as physical features such as surface roughness must be quantified and taken into account to make reliable predictions of the rock flow properties.

Book Understanding Petrophysical Properties of Porous Media Using Imaging and Computational Methods

Download or read book Understanding Petrophysical Properties of Porous Media Using Imaging and Computational Methods written by Mengyu Guan and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Development of both conventional and unconventional energy resources remains a significant component in the US and world energy portfolio. From well log data at the reservoir level to nanoscale characterization, each step informs our understanding of the petrophysical behavior of the system. Due to the multiscale heterogeneity in shale reservoirs especially, characterization at various scales is necessary to capture the full physical behavior. Electron and x-ray microscopy techniques are commonly used to image and characterize the microstructure and composition of porous media. Including information about the microstructure and pore connectivity of the inorganic and organic matrix improves estimations of hydrocarbon production and storage capacity in shale reservoirs. In order to capture the effect of multiscale features on bulk properties, a combination of experimental characterization techniques must be employed. The main objective of this research is to develop a multiscale method to describe porosity, connectivity, and chemistry in complex, microporous systems. We first examine a selection of experimental techniques used to characterize complex microporous media. We combine direct measurements of the pore space with image analysis methods to create a multiscale understanding of a Texas cream carbonate and a Vaca Muerta shale sample. We show how these methods are used to obtain a more accurate representation of the pore network for systems with microporosity or features that are difficult to segment. We propose a series of methods that are used together to improve our understanding across multiple length scales. Next, we apply this workflow to study how kerogen evolution and migration during an artificial maturation process is tied to changes in the shale microstructure. We observe an increase in porosity across the shale surface, coupled with a decrease in organic matter-rich regions. This result, in addition to SEM imaging of microcrack development along intraparticle and organic-rich areas, provides important insight into the possible pathways for kerogen to escape the sample. We then investigate how imaging parameters, specifically resolution, affect the petrophysical properties that are calculated directly from the imaged pore networks of a sandstone sample. We present a workflow to downsample a high-resolution image dataset, segment the pore network, and calculate the single-phase permeability using a direct numerical method. We show directly how changes in imaging resolution affects uncertainty in the porosity and permeability of a sample. Finally, given the imaging intensive work performed above, we investigate the potential of using recently developed deep learning based methods for generating realistic pore volumes. These pore volumes are segmented and used for further petrophysical analysis without requiring additional imaging or sampling of the actual reservoir. We develop a generative flow network and apply the model to create 2D and 3D representations of the sandstone pore network with morphological and petrophysical properties that mimic those of real rock. We illustrate the advantages of using such a model for its rapid generation capability and scalability during training.

Book Physics of Fluid Flow and Transport in Unconventional Reservoir Rocks

Download or read book Physics of Fluid Flow and Transport in Unconventional Reservoir Rocks written by Behzad Ghanbarian and published by John Wiley & Sons. This book was released on 2023-04-13 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics of Fluid Flow and Transport in Unconventional Reservoir Rocks Understanding and predicting fluid flow in hydrocarbon shale and other non-conventional reservoir rocks Oil and natural gas reservoirs found in shale and other tight and ultra-tight porous rocks have become increasingly important sources of energy in both North America and East Asia. As a result, extensive research in recent decades has focused on the mechanisms of fluid transfer within these reservoirs, which have complex pore networks at multiple scales. Continued research into these important energy sources requires detailed knowledge of the emerging theoretical and computational developments in this field. Following a multidisciplinary approach that combines engineering, geosciences and rock physics, Physics of Fluid Flow and Transport in Unconventional Reservoir Rocks provides both academic and industrial readers with a thorough grounding in this cutting-edge area of rock geology, combining an explanation of the underlying theories and models with practical applications in the field. Readers will also find: An introduction to the digital modeling of rocks Detailed treatment of digital rock physics, including decline curve analysis and non-Darcy flow Solutions for difficult-to-acquire measurements of key petrophysical characteristics such as shale wettability, effective permeability, stress sensitivity, and sweet spots Physics of Fluid Flow and Transport in Unconventional Reservoir Rocks is a fundamental resource for academic and industrial researchers in hydrocarbon exploration, fluid flow, and rock physics, as well as professionals in related fields.

Book Multiscale Properties of Unconventional Reservoir Rocks

Download or read book Multiscale Properties of Unconventional Reservoir Rocks written by William F. Woodruff and published by . This book was released on 2015 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Development of Unconventional Reservoirs

Download or read book Development of Unconventional Reservoirs written by Reza Rezaee and published by MDPI. This book was released on 2020-04-16 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need for energy is increasing and but the production from conventional reservoirs is declining quickly. This requires an economically and technically feasible source of energy for the coming years. Among some alternative future energy solutions, the most reasonable source is from unconventional reservoirs. As the name “unconventional” implies, different and challenging approaches are required to characterize and develop these resources. This Special Issue covers some of the technical challenges for developing unconventional energy sources from shale gas/oil, tight gas sand, and coalbed methane.

Book Gas Flow Through Shale

    Book Details:
  • Author : Ahmad Sakhaee-Pour
  • Publisher :
  • Release : 2012
  • ISBN :
  • Pages : 0 pages

Download or read book Gas Flow Through Shale written by Ahmad Sakhaee-Pour and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The growing demand for energy provides an incentive to pursue unconventional resources. Among these resources, tight gas and shale gas reservoirs have gained significant momentum because recent advances in technology allowed us to produce them at an economical rate. More importantly, they seem likely to contain a significant volume of hydrocarbon. There are, however, many questions concerning hydrocarbon production from these unconventional resources. For instance, in tight gas sandstone, we observe a significant variability in the producibilities of wells in the same field. The heterogeneity is even present in a single well with changes in depth. It is not clear what controls this heterogeneity. In shale gas, the pore connectivity inside the void space is not well explored and hence, a representative pore model is not available. Further, the effects of an adsorbed layer of gas and gas slippage on shale permeability are poorly understood. These effects play a crucial role in assigning a realistic permeability for shale in-situ from a laboratory measurement. In the laboratory, in contrast to in-situ, the core sample lacks the adsorbed layer because the permeability measurements are typically conducted at small pore pressures. Moreover, the gas slippages in laboratory and in-situ conditions are not identical. The present study seeks to investigate these discrepancies. Drainage and imbibition are sensitive to pore connectivity and unconventional gas transport is strongly affected by the connectivity. Hence, there is a strong interest in modeling mercury intrusion capillary pressure (MICP) test because it provides valuable information regarding the pore connectivity. In tight gas sandstone, the main objective of this research is to find a relationship between the estimated ultimate recovery (EUR) and the petrophysical properties measured by drainage/imbibition tests (mercury intrusion, withdrawal, and porous plate) and by resistivity analyses. As a measure of gas likely to be trapped in the matrix during production---and hence a proxy for EUR---we use the ratio of residual mercury saturation after mercury withdrawal (S[subscript gr]) to initial mercury saturation (S[subscript gi]), which is the saturation at the start of withdrawal. Crucially, a multiscale pore-level model is required to explain mercury intrusion capillary pressure measurements in these rocks. The multiscale model comprises a conventional network model and a tree-like pore structure (an acyclic network) that mimic the intergranular (macroporosity) and intragranular (microporosity) void spaces, respectively. Applying the multiscale model to porous plate data, we classify the pore spaces of rocks into macro-dominant, intermediate, and micro-dominant. These classes have progressively less drainage/imbibition hysteresis, which leads to the prediction that significantly more hydrocarbon is recoverable from microporosity than macroporosity. Available field data (production logs) corroborate the higher producibility of the microporosity. The recovery of hydrocarbon from micro-dominant pore structure is superior despite its inferior initial production (IP). Thus, a reservoir or a region in which the fraction of microporosity varies spatially may show only a weak correlation between IP and EUR. In shale gas, we analyze the pore structure of the matrix using mercury intrusion data to provide a more realistic model of pore connectivity. In the present study, we propose two pore models: dead-end pores and Nooks and Crannies. In the first model, the void space consists of many dead-end pores with circular pore throats. The second model supposes that the void space contains pore throats with large aspect ratios that are connected through the rock. We analyze both the scanning electron microscope (SEM) images of the shale and the effect of confining stress on the pore size distribution obtained from the mercury intrusion test to decide which pore model is representative of the in-situ condition. We conclude that the dead-end pores model is more representative. In addition, we study the effects of adsorbed layers of CH4 and of gas slippage in pore walls on the flow behavior in individual conduits of simple geometry and in networks of such conduits. The network is based on the SEM image and drainage experiment in shale. To represent the effect of adsorbed gas, the effective size of each throat in the network depends on the pressure. The hydraulic conductance of each throat is determined based on the Knudsen number (Kn) criterion. The results indicate that laboratory measurements made with N2 at ambient temperature and 5-MPa pressure, which is typical for the transient pulse decay method, overestimate the gas permeability in the early life of production by a factor of 4. This ratio increases if the measurement is run at ambient conditions because the low pressure enhances the slippage and reduces the thickness of the adsorbed layer. Moreover, the permeability increases nonlinearly as the in-situ pressure decreases during production. This effect contributes to mitigating the decline in production rates of shale gas wells. Laboratory data available in the literature for methane permeability at pressures below 7 MPa agree with model predictions of the effect of pressure.

Book Shale

    Book Details:
  • Author : Thomas Dewers
  • Publisher : John Wiley & Sons
  • Release : 2019-10-15
  • ISBN : 1119066689
  • Pages : 318 pages

Download or read book Shale written by Thomas Dewers and published by John Wiley & Sons. This book was released on 2019-10-15 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in theories, methods and applications for shale resource use Shale is the dominant rock in the sedimentary record. It is also the subject of increased interest because of the growing contribution of shale oil and gas to energy supplies, as well as the potential use of shale formations for carbon dioxide sequestration and nuclear waste storage. Shale: Subsurface Science and Engineering brings together geoscience and engineering to present the latest models, methods and applications for understanding and exploiting shale formations. Volume highlights include: Review of current knowledge on shale geology Latest shale engineering methods such as horizontal drilling Reservoir management practices for optimized oil and gas field development Examples of economically and environmentally viable methods of hydrocarbon extraction from shale Discussion of issues relating to hydraulic fracking, carbon sequestration, and nuclear waste storage Book Review: I. D. Sasowsky, University of Akron, Ohio, September 2020 issue of CHOICE, CHOICE connect, A publication of the Association of College and Research Libraries, A division of the American Library Association, Connecticut, USA Shale has a long history of use as construction fill and a ceramic precursor. In recent years, its potential as a petroleum reservoir has generated renewed interest and intense scientific investigation. Such work has been significantly aided by the development of instrumentation capable of examining and imaging these very fine-grained materials. This timely multliauthor volume brings together 15 studies covering many facets of the related science. The book is presented in two sections: an overview and a second section emphasizing unconventional oil and gas. Topics covered include shale chemistry, metals content, rock mechanics, borehole stability, modeling, and fluid flow, to name only a few. The introductory chapter (24 pages) is useful and extensively referenced. The lead chapter to the second half of the book, "Characterization of Unconventional Resource Shales," provides a notably detailed analysis supporting a comprehensive production workflow. The book is richly illustrated in full color, featuring high-quality images, graphs, and charts. The extensive index provides depth of access to the volume. This work will be of special interest to a diverse group of investigators moving forward with understanding this fascinating group of rocks. Summing Up: Recommended. Upper-division undergraduates through faculty and professionals.

Book Petrophysical Properties of Crystalline Rocks

Download or read book Petrophysical Properties of Crystalline Rocks written by Peter K. Harvey and published by Geological Society of London. This book was released on 2005 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Determining Petrophysical Properties of Reservoir Rocks by Image Analysis

Download or read book Determining Petrophysical Properties of Reservoir Rocks by Image Analysis written by National Institute for Petroleum and Energy Research (Bartlesville, Okla.). and published by . This book was released on 1989 with total page 27 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Unconventional Oil and Gas Resources Handbook

Download or read book Unconventional Oil and Gas Resources Handbook written by Y Zee Ma and published by Gulf Professional Publishing. This book was released on 2015-10-06 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unconventional Oil and Gas Resources Handbook: Evaluation and Development is a must-have, helpful handbook that brings a wealth of information to engineers and geoscientists. Bridging between subsurface and production, the handbook provides engineers and geoscientists with effective methodology to better define resources and reservoirs. Better reservoir knowledge and innovative technologies are making unconventional resources economically possible, and multidisciplinary approaches in evaluating these resources are critical to successful development. Unconventional Oil and Gas Resources Handbook takes this approach, covering a wide range of topics for developing these resources including exploration, evaluation, drilling, completion, and production. Topics include theory, methodology, and case histories and will help to improve the understanding,integrated evaluation, and effective development of unconventional resources. - Presents methods for a full development cycle of unconventional resources, from exploration through production - Explores multidisciplinary integrations for evaluation and development of unconventional resources and covers a broad range of reservoir characterization methods and development scenarios - Delivers balanced information with multiple contributors from both academia and industry - Provides case histories involving geological analysis, geomechanical analysis, reservoir modeling, hydraulic fracturing treatment, microseismic monitoring, well performance and refracturing for development of unconventional reservoirs

Book Unconventional Hydrocarbon Resources

Download or read book Unconventional Hydrocarbon Resources written by Reza Barati and published by John Wiley & Sons. This book was released on 2020-12-03 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive textbook presenting techniques for the analysis and characterization of shale plays Significant reserves of hydrocarbons cannot be extracted using conventional methods. Improvements in techniques such as horizontal drilling and hydraulic fracturing have increased access to unconventional hydrocarbon resources, ushering in the “shale boom” and disrupting the energy sector. Unconventional Hydrocarbon Resources: Techniques for Reservoir Engineering Analysis covers the geochemistry, petrophysics, geomechanics, and economics of unconventional shale oil plays. The text uses a step-by-step approach to demonstrate industry-standard workflows for calculating resource volume and optimizing the extraction process. Volume highlights include: Methods for rock and fluid characterization of unconventional shale plays A workflow for analyzing wells with stimulated reservoir volume regions An unconventional approach to understanding of fluid flow through porous media A comprehensive summary of discoveries of massive shale resources worldwide Data from Eagle Ford, Woodford, Wolfcamp, and The Bakken shale plays Examples, homework assignments, projects, and access to supplementary online resources Hands-on teaching materials for use in petroleum engineering software applications The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Book Dynamic Petrophysical Properties of Laminated Rocks

Download or read book Dynamic Petrophysical Properties of Laminated Rocks written by Naif Mohammed Alrubaie and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Laminae included in rock samples are small-scale heterogeneities that introduce anisotropy to the larger-scale rock system. They can be described in terms of grain size variations, as in a clastic sediment that is interbedded with shale layers. Such variations in grain size translate into variations in pore and pore-throat size distributions, and they control the effective two-phase fluid transport properties of the rock. Ultimately, they impact hydrocarbon recovery. This thesis implements an experimental workflow to study and quantify the impact of laminations on dynamic petrophysical properties in the presence of two distinct types of layering: cross and parallel. Accordingly, relative permeability and capillary pressure are measured under two flow conditions: across (perpendicular flow) and along layers (parallel flow). Two cylindrical composite rock samples were fabricated in which the first composite sample was interbedded with a lower permeability rock (Berea sandstone interbedded with Kentucky sandstone), and the second one was interbedded with a higher permeability rock (Kentucky sandstone interbedded with Berea sandstone) to represent the layering cases defined above. Multiple laboratory experiments were carried out to measure mercury intrusion capillary pressure (MICP) and saturation-dependent relative permeability. These measurements were complemented with micro-computed tomography images and nuclear magnetic resonance (NMR) measurements. For the perpendicular flow experiments, I sealed the sub-samples into a cylindrical sample in order to allow mercury to flow across them. The seal surrounds the samples and forces mercury to intrude only through the two ends (faces) of the composite samples. In the parallel flow experiments, I first sealed each piece individually and then sealed the entire stack. This was done to ensure that flow pathways between the pieces were sealed. A bimodal pore-size distribution in the Berea interbedded with Kentucky and in the Kentucky interbedded with Berea samples was revealed by MICP measurements in the parallel layering composite cores. In the cross-layering experiments, I observed a bimodal pore-size distribution for the two rock arrangements. Relative permeability was higher in the parallel flow composite cores compared to the perpendicular flow composite cores. In core data analysis, samples are taken from intervals considered representative of one single rock type. When the data are quality checked, petrophysical measurements from samples that exhibit grain laminations are often excluded. This bias propagates to simulation work and leads to results that often do not match field data

Book Quantitative Characterization and Engineering Application of Pores and Fractures of Different Scales in Unconventional Reservoirs

Download or read book Quantitative Characterization and Engineering Application of Pores and Fractures of Different Scales in Unconventional Reservoirs written by Wenlong Ding and published by Frontiers Media SA. This book was released on 2023-02-16 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Unconventional Petroleum Geology

Download or read book Unconventional Petroleum Geology written by Caineng Zou and published by Elsevier. This book was released on 2017-03-10 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unconventional Petroleum Geology, Second Edition presents the latest research results of global conventional and unconventional petroleum exploration and production. The first part covers the basics of unconventional petroleum geology, its introduction, concept of unconventional petroleum geology, unconventional oil and gas reservoirs, and the origin and distribution of unconventional oil and gas. The second part is focused on unconventional petroleum development technologies, including a series of technologies on resource assessment, lab analysis, geophysical interpretation, and drilling and completion. The third and final section features case studies of unconventional hydrocarbon resources, including tight oil and gas, shale oil and gas, coal bed methane, heavy oil, gas hydrates, and oil and gas in volcanic and metamorphic rocks. - Provides an up-to-date, systematic, and comprehensive overview of all unconventional hydrocarbons - Reorganizes and updates more than half of the first edition content, including four new chapters - Includes a glossary on unconventional petroleum types, including tight-sandstone oil and gas, coal-bed gas, shale gas, oil and gas in fissure-cave-type carbonate rocks, in volcanic reservoirs, and in metamorphic rocks, heavy crude oil and natural bitumen, and gas hydrates - Presents new theories, new methods, new technologies, and new management methods, helping to meet the demands of technology development and production requirements in unconventional plays

Book Proceedings of the International Field Exploration and Development Conference 2023

Download or read book Proceedings of the International Field Exploration and Development Conference 2023 written by Jia’en Lin and published by Springer Nature. This book was released on with total page 1731 pages. Available in PDF, EPUB and Kindle. Book excerpt: