EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Investigation of Potential Platforms for Low Frequency MEMS based Piezoelectric Energy Harvesting

Download or read book Investigation of Potential Platforms for Low Frequency MEMS based Piezoelectric Energy Harvesting written by Mehdi Rezaeisaray and published by . This book was released on 2014 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: MEMS based energy harvesters have recently been investigated for scavenging, otherwise useless, ambient vibration energy. Piezoelectric materials are fabricated on micro-devices to convert the mechanical vibration energy into electrical energy. The main focus for these harvesters is low frequency (under 500 Hz) ambient vibration which is the source of a fundamental challenge with MEMS oscillators. The smaller the oscillator is, the higher its natural frequencies will become. Various techniques have been proposed to decrease the natural frequency of micro-energy harvesters such as increasing the length of the devices or assembling extra proof mass to the fabricated devices which could potentially affect the mass production of the MEMS devices. Another challenge is that most of the reported piezoelectric energy harvesters in the literature have cantilever designs. These structures have a high mechanical quality factor providing a sharp peak at their resonant frequency. Since microfabricating resonators with a resonant frequency exactly matching their designed value is very challenging, linear cantilever designs seem to be less practical for real applications where excitation frequency could change. Therefore, some techniques in vibration have been adapted to widen the frequency bandwidth of the harvesters. One of the most effective methods to broaden the frequency bandwidth is taking advantage of large deflection effect of oscillators. However, some of the proposed designs such as a fixed-fixed beam design have high resonant frequencies (≥1 kHz), whereas the focus for energy harvesters is low frequency range. In this work, a silicon based structure has been designed and fabricated to carry an electronic chip and potentially provide in-situ supplementary power for it. This design provides capability of harvesting at three different frequencies because the resonant frequencies of this structure at its first three mode shapes are within the low ambient vibration frequency range. The widening frequency bandwidth has been investigated for this design. Natural frequencies as low as 71.8, 84.5, and 188.4 Hz have been measured using a laser vibrometer. A frequency bandwidth of ~10 Hz has been obtained for the 2nd mode shape of the structure under the base excitation of 0.2g. A maximum open circuit voltage of ~1V and maximum power output of 136nW have been obtained using this harvester. In addition, as opposed to the conventional silicon-based harvesters, polymeric materials have been investigated as the main structural material for energy harvesters. Due to the much lower stiffness of polymers compared to silicon, the resonant frequency of the harvesters could be reduced. To prove the concept, a SU-8 (ESU-8=5GPa vs. ESi=160GPa) membrane has been designed and fabricated with Aluminum Nitride harvesting elements. The membrane configuration provides the capability to widen the harvester's frequency bandwidth. Testing results reveal a linear resonant frequency of 381 Hz, frequency bandwidth of 146Hz, maximum output power of 1.37μW, and power density of 3.81 μW/cm2 at the base excitation of 4g with this design. The much lower resonant frequency of polymeric structures compared to the similar silicon-based structures (more than 5 times lower) makes them a strong candidate for the future harvesters. The objective of this thesis is to develop a platform using silicon-based and polymer-based energy harvesters to improve the performance of the energy harvesters by reducing the resonant frequencies and widening the frequency bandwidth. Throughout this research, all stages including design, fabrication, packaging, testing, and characterization of both silicon- and polymer-based harvesters have been developed or adapted for the purpose of this work. Finite element simulations have been conducted to examine the mechanical response of the structures as well as their electrical output at the design stage. A scalable microfabrication process flow has been developed in this work to fabricate piezoelectric layers on SU-8 micro-structures. An improved approach for cleaving fabricated devices from the silicon substrate has been developed to overcome challenges of the dicing process. Various 3-D micro-assembly techniques have been adapted to package the fabricated harvesters. In addition, 3-D printed parts were used to enhance the yield of the packaging and testing stages. This technique could potentially be used for bio-compatible packaging, as well. In conclusion, the polymer-based and wideband energy harvesters seem promising for real applications at low ambient vibration frequencies. This research introduces opportunities to further improve the performance of the harvesters by decreasing their resonant frequencies.

Book Piezoelectric Energy Harvesting

Download or read book Piezoelectric Energy Harvesting written by Alper Erturk and published by John Wiley & Sons. This book was released on 2011-04-04 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.

Book Design and Development of MEMS based Guided Beam Type Piezoelectric Energy Harvester

Download or read book Design and Development of MEMS based Guided Beam Type Piezoelectric Energy Harvester written by Shanky Saxena and published by Springer Nature. This book was released on 2021-04-06 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents device design, layout design, FEM analysis, device fabrication, and packaging and testing of MEMS-based piezoelectric vibration energy harvesters. It serves as a complete guide from design, FEM, and fabrication to characterization. Each chapter of this volume illustrates key insight technologies through images. The book showcases different technologies for energy harvesting and the importance of energy harvesting in wireless sensor networks. The design, simulation, and comparison of three types of structures – single beam cantilever structure, cantilever array structure, and guided beam structure have also been reported in one of the chapters. In this volume, an elaborate characterization of two-beam and four-beam fabricated devices has been carried out. This characterization includes structural, material, morphological, topological, dynamic, and electrical characterization of the device. The volume is very concise, easy to understand, and contains colored images to understand the details of each process.

Book Engineering Applications for New Materials and Technologies

Download or read book Engineering Applications for New Materials and Technologies written by Andreas Öchsner and published by Springer. This book was released on 2018-01-25 with total page 645 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the expertise, skills, and techniques needed for the development of new materials and technologies. It focuses on finite element and finite volume methods that are used for engineering simulations, and present many state-of-the-art applications and advances to highlight these methods’ importance. For example, modern joining technologies can be used to fabricate new compound or composite materials, even those formed from dissimilar component materials. These composite materials are often exposed to harsh environments, must deliver specific characteristics, and are primarily used in automotive and marine technologies, i.e., ships, amphibious vehicles, docks, offshore structures, and even robots. To achieve the desired material performance, computer-based engineering tools are widely used for simulation, data evaluation, and design processes.

Book MEMS Scale CMOS Compatible Energy Harvesters Using Piezoelectric Polymers for Sustainable Electronics

Download or read book MEMS Scale CMOS Compatible Energy Harvesters Using Piezoelectric Polymers for Sustainable Electronics written by Alperen Toprak and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of microelectronics had a remarkable progress since its beginnings in 1960s, which led to the advent of myriad new electronic devices that found widespread usage in daily life. Continuous advances in CMOS and MEMS technologies reduced the cost, size, weight, and power requirements of these devices, enabling the realization of distributed systems such as wireless sensor networks. However, due to much slower pace of innovation, currently available battery technologies continue to dictate the size, weight and cost of these systems. There are further concerns brought by the batteries regarding the environmental effects or feasibility of dead battery replacement in distributed or embedded systems. As a result of this problem, there has been a growing research impetus on energy harvesting technologies, which are expected to alleviate the problems brought by the fixed capacity energy sources in electronic devices. This dissertation proposes a new class of MEMS-scale piezoelectric energy harvesters that have the potential to be monolithically integrated with CMOS circuits. Proposed devices will utilize polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE), a piezoelectric polymer with an impressive electromechanical coupling factor of 0.3. Its energy harvesting potential was evaluated using theoretical analyses and finite element method (FEM) simulations and compared with other CMOS compatible piezoelectric materials. Various architectural options for the mechanical and electrical structure of the energy harvester were examined and most promising options were determined. The process for the fabrication of PVDF-TrFE thin films was optimized to yield high quality films with strong ferroelectric and piezoelectric properties. A comprehensive characterization study was performed to measure the dielectric, ferroelectric, and piezoelectric properties of the fabricated films. Cantilever type MEMS scale piezoelectric energy harvesters (PEH) were fabricated and characterized. Maximum power output density on purely resistive loads in response to a 1.0 g input acceleration was measured as 27.8 nW/mm2 from a (1800 [mu]m x 2000 [mu]m) device at its resonance frequency of 192.5 Hz. A power conditioning circuit, based on synchronous switching on inductor technique, was also designed and integrated with the fabricated prototypes. The circuit, which draws 250 nW power from ±1 V dual supplies at 200 Hz, improved the DC power output of the PEHs by 165%. Using the same (1800 [mu]m x 2000 [mu]m) prototype in combination with the circuit, a maximum power of 140 nW was transferred to a DC load under 1.0 g acceleration. The results obtained throughout the course of this dissertation work proved that PVDF-TrFE can be used in MEMS scale energy harvesting devices. CMOS compatible fabrication process of the polymer makes it possible to integrate these energy harvesters with CMOS circuits on the same substrate. This monolithic integration approach would improve the unit cost, size, and reliability compared to integration at higher levels and therefore, can find use in applications such as wireless sensors networks, structure health monitoring systems, and wide area surveillance applications.

Book Energy Scavenging for Wireless Sensor Networks

Download or read book Energy Scavenging for Wireless Sensor Networks written by Shad Roundy and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: The vast reduction in size and power consumption of CMOS circuitry has led to a large research effort based around the vision of wireless sensor networks. The proposed networks will be comprised of thousands of small wireless nodes that operate in a multi-hop fashion, replacing long transmission distances with many low power, low cost wireless devices. The result will be the creation of an intelligent environment responding to its inhabitants and ambient conditions. Wireless devices currently being designed and built for use in such environments typically run on batteries. However, as the networks increase in number and the devices decrease in size, the replacement of depleted batteries will not be practical. The cost of replacing batteries in a few devices that make up a small network about once per year is modest. However, the cost of replacing thousands of devices in a single building annually, some of which are in areas difficult to access, is simply not practical. Another approach would be to use a battery that is large enough to last the entire lifetime of the wireless sensor device. However, a battery large enough to last the lifetime of the device would dominate the overall system size and cost, and thus is not very attractive. Alternative methods of powering the devices that will make up the wireless networks are desperately needed.

Book Energy Harvesting Technologies

Download or read book Energy Harvesting Technologies written by Shashank Priya and published by Springer Science & Business Media. This book was released on 2008-11-28 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy Harvesting Technologies provides a cohesive overview of the fundamentals and current developments in the field of energy harvesting. In a well-organized structure, this volume discusses basic principles for the design and fabrication of bulk and MEMS based vibration energy systems, theory and design rules required for fabrication of efficient electronics, in addition to recent findings in thermoelectric energy harvesting systems. Combining leading research from both academia and industry onto a single platform, Energy Harvesting Technologies serves as an important reference for researchers and engineers involved with power sources, sensor networks and smart materials.

Book Triboelectric Nanogenerators

Download or read book Triboelectric Nanogenerators written by Zhong Lin Wang and published by Springer. This book was released on 2016-08-17 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces an innovative and high-efficiency technology for mechanical energy harvesting. The book covers the history and development of triboelectric nanogenerators, basic structures, working principles, performance characterization, and potential applications. It is divided into three parts: Part A illustrates the fundamental working modes of triboelectric nanogenerators with their prototype structures and theoretical analysis; Part B and Part C introduce two categories of applications, namely self-powered systems and self-powered active sensors. The book will be an ideal guide to scientists and engineers beginning to study triboelectric nanogenerators or wishing to deepen their knowledge of the field. Readers will be able to place the technical details about this technology in context, and acquire the necessary skills to reproduce the experimental setups for fabrication and measurement.

Book Mechatronics

    Book Details:
  • Author : A. Preumont
  • Publisher : Springer Science & Business Media
  • Release : 2006-09-09
  • ISBN : 1402046960
  • Pages : 200 pages

Download or read book Mechatronics written by A. Preumont and published by Springer Science & Business Media. This book was released on 2006-09-09 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume treats Lagrange equations for electromechanical systems, including piezoelectric transducers and selected applications. It is essentially an extension to piezoelectric systems of the work by Crandall et al.:"Dynamics of Mechanical and Electromechanical Systems", published in 1968. The first three chapters contain classical material based on this and other well known standard texts in the field. Some applications are new and include material not published in a monograph before.

Book Piezoelectric MEMS

    Book Details:
  • Author : Ulrich Schmid
  • Publisher : MDPI
  • Release : 2018-07-10
  • ISBN : 3038970050
  • Pages : 177 pages

Download or read book Piezoelectric MEMS written by Ulrich Schmid and published by MDPI. This book was released on 2018-07-10 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Piezoelectric MEMS" that was published in Micromachines

Book Nanotechnology for Energy Sustainability

Download or read book Nanotechnology for Energy Sustainability written by Baldev Raj and published by John Wiley & Sons. This book was released on 2017-01-27 with total page 1487 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dieses Referenzwerk in drei handlichen Bänden bietet einen detaillierten Überblick über Anwendungen der Nanotechnologie im Bereich Nachhaltigkeit in der Energieversorgung. Der erste Band dieses klar strukturierten Nachschlagewerks behandelt nach der Einleitung die Themen Energieerzeugung, erneuerbare Energien, Energiespeicherung, Energieverteilung sowie Energieumwandlung und Energy-Harvesting. Im zweiten Band werden auf Nanotechnologie basierte Materialen, Energieeinsparung und -management, technologische und urheberrechtlich relevante Fragen, Märkte und Umweltsanierung erörtert. Der dritte Band wirft einen Blick in die Zukunft, auf technologische Fortschritte und gibt Empfehlungen. Ein wichtiges Handbuch für alle Experten auf diesem Gebiet, von Forschern und Ingenieuren im wissenschaftlichen Bereich bis hin zu Entwicklern in der Industrie.

Book Piezoelectric Vibration Energy Harvesting

Download or read book Piezoelectric Vibration Energy Harvesting written by Sajid Rafique and published by Springer. This book was released on 2017-11-03 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: The electromechanical coupling effect introduced by piezoelectric vibration energy harvesting (PVEH) presents serious modeling challenges. This book provides close-form accurate mathematical modeling and experimental techniques to design and validate dual function PVEH vibration absorbing devices as a solution to mitigate vibration and maximize operational efficiency. It includes in-depth experimental validation of a PVEH beam model based on the analytical modal analysis method (AMAM), precisely identifying electrical loads that harvest maximum power and induce maximum electrical damping. The author's detailed analysis will be useful for researchers working in the rapidly emerging field of vibration based energy harvesting, as well as for students investigating electromechanical devices, piezoelectric sensors and actuators, and vibration control engineering.

Book Piezoelectric MEMS Resonators

Download or read book Piezoelectric MEMS Resonators written by Harmeet Bhugra and published by Springer. This book was released on 2017-01-09 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associated with testing and qualification Examples of commercialization paths for piezoelectric MEMS resonators in the timing and the filter markets ...and more! The authors present industry and academic perspectives, making this book ideal for engineers, graduate students, and researchers.

Book Micro Energy Harvesting

Download or read book Micro Energy Harvesting written by Danick Briand and published by John Wiley & Sons. This book was released on 2015-06-22 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, energy storage, medicine and low-power system electronics. In addition, they survey the energy harvesting principles based on chemical, thermal, mechanical, as well as hybrid and nanotechnology approaches. In unparalleled detail this volume presents the complete picture -- and a peek into the future -- of micro-powered microsystems.

Book Mems for Biomedical Applications

Download or read book Mems for Biomedical Applications written by Shekhar Bhansali and published by Elsevier. This book was released on 2012-07-18 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS.With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy

Book Handbook of Energy Harvesting Power Supplies and Applications

Download or read book Handbook of Energy Harvesting Power Supplies and Applications written by Peter Spies and published by CRC Press. This book was released on 2015-06-01 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the fundamentals and principles of energy harvesting and provides the necessary theory and background to develop energy harvesting power supplies. It explains the overall system design and gives quantitative assumptions on environmental energy. It explains different system blocks for an energy harvesting power supply and the trade-offs. The text covers in detail different energy transducer technologies such as piezoelectric, electrodynamic, and thermoelectric generators and solar cells from the material to the component level and explains the appropriate power management circuits required in these systems. Furthermore, it describes and compares storage elements such as secondary batteries and supercapacitors to select the most appropriate one for the application. Besides power supplies that use ambient energy, the book presents systems that use electromagnetic fields in the radio frequency range. Finally, it discusses different application fields and presents examples of self-powered electronic systems to illustrate the content of the preceding chapters.

Book Piezoelectric Aeroelastic Energy Harvesting

Download or read book Piezoelectric Aeroelastic Energy Harvesting written by Hassan Elahi and published by Elsevier. This book was released on 2021-11-25 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Piezoelectric Aeroelastic Energy Harvesting explains the design and implementation of piezoelectric energy harvesting devices based on fluid-structure interaction. There is currently an increase in demand for low power electronic instruments in a range of settings, and recent advances have driven their energy consumption downwards. As a result, the possibility to extract energy from an operational environment is of growing significance to industry and academic research globally. This book solves problems related to the integration of smart structures with the aeroelastic system, addresses the importance of the aerodynamic model on accurate prediction of the performance of the energy harvester, describes the overall effect of the piezoelectric patch on the dynamics of the system, and explains different mechanisms for harvesting energy via fluid-structure interaction. This wealth of innovative technical information is supported by introductory chapters on piezoelectric materials, energy harvesting and circuits, and fluid structure interaction, opening this interdisciplinary topic up for readers with a range of backgrounds. Provides new designs of piezoelectric energy harvesters for fluid-structure interaction Explains how to correctly model aerodynamics for effective aeroelastic energy harvesting Numerical examples allow the reader to practice the design, modeling and implementation of piezoelectric energy harvesting devices