EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book State of the Art of Gadolinium Zirconate Based Thermal Barrier Coatings

Download or read book State of the Art of Gadolinium Zirconate Based Thermal Barrier Coatings written by Gultekin Goller and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fast consumption of fossil fuel resources and economic competitiveness makes it necessary to increase the efficiency of turbine engines. For this purpose, thermal barrier coating (TBC) has been used on some critical parts of gas turbines. Yttria-stabilized zirconia (YSZ) is widely and commercially used as a ceramic top coat material for TBC in the gas turbine system. On the other hand, the efforts to identify new material having better properties than YSZ have been continued. Gadolinium zirconate (GZ) is a promising alternative TBC material with its lower thermal conductivity, better sintering ability, and higher melting point and phase stability than YSZ. However, recent research studies on the responses of GZ-based TBC materials to the complex demands of modern gas turbine applications should be gathered under a study by comparing them with the results of traditional TBC material. This chapter discusses the GZ based TBC system, specifically addressing issues related to the production process and designing of the coating architecture, in comparison with some of the significant properties with YSZ and the test methodology. Moreover, the chapter also contains information about laser surface modification of the GZ-based TBC.

Book Durability of zirconia thermal barrier ceramic coatings on air cooled turbine blades in cyclic jet engine operation

Download or read book Durability of zirconia thermal barrier ceramic coatings on air cooled turbine blades in cyclic jet engine operation written by Lewis Research Center and published by . This book was released on 1976 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Energy Research Abstracts

Download or read book Energy Research Abstracts written by and published by . This book was released on 1994-10 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book NASA Technical Paper

Download or read book NASA Technical Paper written by and published by . This book was released on 1984 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Environmental Degradation of Oxidation Resistant and Thermal Barrier Coatings for Fuel flexible Gas Turbine Applications

Download or read book Environmental Degradation of Oxidation Resistant and Thermal Barrier Coatings for Fuel flexible Gas Turbine Applications written by Prabhakar Mohan and published by . This book was released on 2010 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of thermal barrier coatings (TBCs) has been undoubtedly the most critical advancement in materials technology for modern gas turbine engines. TBCs are widely used in gas turbine engines for both power-generation and propulsion applications. Metallic oxidation-resistant coatings (ORCs) are also widely employed as a stand-alone protective coating or bond coat for TBCs in many high-temperature applications. Among the widely studied durability issues in these high-temperature protective coatings, one critical challenge that received greater attention in recent years is their resistance to high-temperature degradation due to corrosive deposits arising from fuel impurities and CMAS (calcium-magnesium-alumino-silicate) sand deposits from air ingestion. The presence of vanadium, sulfur, phosphorus, sodium and calcium impurities in alternative fuels warrants a clear understanding of high-temperature materials degradation for the development of fuel-flexible gas turbine engines. Degradation due to CMAS is a critical problem for gas turbine components operating in a dust-laden environment. In this study, high-temperature degradation due to aggressive deposits such as V2O5, P2O5, Na2SO4, NaVO3, CaSO4 and a laboratory-synthesized CMAS sand for free-standing air plasma sprayed (APS) yttria stabilized zirconia (YSZ), the topcoat of the TBC system, and APS CoNiCrAlY, the bond coat of the TBC system or a stand-alone ORC, is examined. Phase transformations and microstructural development were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. This study demonstrated that the V2O5 melt degrades the APS YSZ through the formation of ZrV2O-- and YVO4 at temperatures below 747°C and above 747°C, respectively. Formation of YVO4 leads to the depletion of the Y2O3 stabilizer and the deleterious transformation of the YSZ to the monoclinic ZrO2 phase. The investigation on the YSZ degradation by Na2SO4 and a Na2SO4 + V2O5 mixture (50-50 mol. %) demonstrated that Na2SO4 itself did not degrade the YSZ, however, in the presence of V2O5, Na2SO4 formed vanadates such as NaVO3 that degraded the YSZ through YVO4 formation at temperature as low as 700°C. The APS YSZ was found to react with the P2O5 melt by forming ZrP2O-- at all temperatures. This interaction led to the depletion of ZrO2 in the YSZ (i.e., enrichment of Y2O3 in t'-YSZ) and promoted the formation of the fluorite-cubic ZrO2 phase. Above 1250°C, CMAS deposits were observed to readily infiltrate and significantly dissolve the YSZ coating via thermochemical interactions. Upon cooling, zirconia reprecipitated with a spherical morphology and a composition that depended on the local melt chemistry. The molten CMAS attack destabilized the YSZ through the detrimental phase transformation (t'[right arrow] t[right arrow]f + m). Free standing APS CoNiCrAlY was also prone to degradation by corrosive molten deposits. The V2O5 melt degraded the APS CoNiCrAlY through various reactions involving acidic dissolution of the protective oxide scale, which yielded substitutional-solid solution vanadates such as (Co, Ni)3(VO4)2 and (Cr, Al)VO4. The molten P2O5, on the other hand, was found to consume the bond coat constituents significantly via reactions that formed both Ni/Co rich phosphates and Cr/Al rich phosphates. Sulfate deposits such as Na2SO4, when tested in encapsulation, damaged the CoNiCrAlY by Type I acidic fluxing hot corrosion mechanisms at 1000°C that resulted in accelerated oxidation and sulfidation. The formation of a protective continuous Al2O3 oxide scale by preoxidation treatment significantly delayed the hot corrosion of CoNiCrAlY by sulfates. However, CoNiCrAlY in both as-sprayed and preoxidized condition suffered a significant damage by CaSO4 deposits via a basic fluxing mechanism that yielded CaCrO4 and CaAl2O4. The CMAS melt also dissolved the protective Al2O3 oxide scale developed on CoNiCrAlY by forming anorthite platelets and spinel oxides. Based on the detailed investigation on degradation of the APS YSZ and CoNiCrAlY by various corrosive deposits, an experimental attempt was carried out to mitigate the melt-induced deposit attack. Experimental results from this study demonstrate, for the first time, that an oxide overlay produced by electrophoretic deposition (EPD) can effectively perform as an environmental barrier overlay for APS TBCs. The EPD protective overlay has a uniform and easily-controllable thickness, uniformly distributed closed pores and tailored chemistry. The EPD Al2O3 and MgO overlays were successful in protecting the APS YSZ TBCs against CMAS attack and hot corrosion attack (e.g., sulfate and vanadate), respectively. Furnace thermal cyclic oxidation testing of overlay-modified TBCs on bond-coated superalloy also demonstrated the good adhesive durability of the EPD Al2O3 overlay.

Book Novel Lanthanum Zirconate based Thermal Barrier Coatings for Energy Applications

Download or read book Novel Lanthanum Zirconate based Thermal Barrier Coatings for Energy Applications written by Xingye Guo and published by Springer Nature. This book was released on 2020-11-09 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the latest developments of lanthanum zirconate based thermal barrier coatings. The physical, thermal, and mechanical properties of lanthanum zirconate powder and coatings are critically evaluated. Processing and characterizations of lanthanum zirconate powder and coatings under various conditions are also examined. Theoretical studies on the powder and coating’s properties are presented as well. Finally, future research directions of lanthanum zirconate as the next generation thermal barrier applications are proposed. Discusses fundamental mechanisms, processing, and applications of advanced coating materials; Addresses modeling methods of thermal barrier coatings focusing on surface and interface properties; A review suitable for industrial, academic and government researchers.

Book Environmental Barrier Coatings

Download or read book Environmental Barrier Coatings written by Kang N. Lee and published by MDPI. This book was released on 2020-12-29 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: The global increase in air travel will require commercial vehicles to be more efficient than ever before. Advanced engine hot section materials are a key technology required to keep fuel consumption and emission to a minimum in next-generation gas turbines. Ceramic matrix composites (CMCs) are the most promising material to revolutionize gas turbine hot section materials technology because of their excellent high‐temperature properties. Rapid surface recession due to volatilization by water vapor is the Achilles heel of CMCs. Environmental barrier coatings (EBCs) is an enabling technology for CMCs, since it protects CMCs from water vapor. The first CMC component entered into service in 2016 in a commercial engine, and more CMC components are scheduled to follow within the next few years. One of the most difficult challenges to CMC components is EBC durability, because failure of EBC leads to a rapid reduction in CMC component life. Key contributors to EBC failure include recession, oxidation, degradation by calcium‐aluminum‐magnesium silicates (CMAS) deposits, thermal and thermo‐mechanical strains, particle erosion, and foreign object damage (FOD). Novel EBC chemistries, creative EBC designs, and robust processes are required to meet EBC durability challenges. Engine-relevant testing, characterization, and lifing methods need to be developed to improve EBC reliability. The aim of this Special Issue is to present recent advances in EBC technology to address these issues. In particular, topics of interest include but are not limited to the following: • Novel EBC chemistries and designs; • Processing including plasma spray, suspension plasma spray, solution precursor plasma spray, slurry process, PS-PVD, EB-PVD, and CVD; • Testing, characterization, and modeling; • Lifing.

Book Coatings for High Temperature Structural Materials

Download or read book Coatings for High Temperature Structural Materials written by National Research Council and published by National Academies Press. This book was released on 1996-05-13 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book assesses the state of the art of coatings materials and processes for gas-turbine blades and vanes, determines potential applications of coatings in high-temperature environments, identifies needs for improved coatings in terms of performance enhancements, design considerations, and fabrication processes, assesses durability of advanced coating systems in expected service environments, and discusses the required inspection, repair, and maintenance methods. The promising areas for research and development of materials and processes for improved coating systems and the approaches to increased coating standardization are identified, with an emphasis on materials and processes with the potential for improved performance, quality, reproducibility, or manufacturing cost reduction.

Book Overview of Zirconia with Respect to Gas Turbine Applications

Download or read book Overview of Zirconia with Respect to Gas Turbine Applications written by James D. Cawley and published by . This book was released on 1984 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Further Industrial Tests of Ceramic Thermal Barrier Coatings

Download or read book Further Industrial Tests of Ceramic Thermal Barrier Coatings written by Curt H. Liebert and published by . This book was released on 1982 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Progress in Thermal Barrier Coatings

Download or read book Progress in Thermal Barrier Coatings written by ACerS (American Ceramics Society, The) and published by John Wiley & Sons. This book was released on 2009-06-15 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition of the Progress in Ceramic Technology series compiles articles published on thermal barrier coatings (TBCs) by The American Ceramic Society (ACerS). It collects in one resource the current research papers on materials-related aspects of thermal barrier coatings and associated technologies. Logically organized and carefully selected, the papers in this edition divide into six categories: Applications Material Improvements and Novel Compositions Developments in Processing Mechanical Properties Thermal Properties Citations follow each title in the table of contents, making this a key resource for professionals and academia.

Book The Effect of Environment on Thermal Barrier Coating Lifetime

Download or read book The Effect of Environment on Thermal Barrier Coating Lifetime written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: While the water vapor content of the combustion gas in natural gas-fired land-based turbines is ~10%, it can be 20-85% with coal-derived (syngas or H2) fuels or innovative turbine concepts for more efficient carbon capture. Additional concepts envisage working fluids with high CO2 contents to facilitate carbon capture and sequestration. To investigate the effects of changes in the gas composition on thermal barrier coating (TBC) lifetime, furnace cycling tests (1-h and 100-h cycles) were performed in air with 10, 50, and 90 vol. % water vapor and CO2-10% H2O and compared to prior results in dry air or O2. Two types of TBCs were investigated: (1) diffusion bond coatings (Pt-diffusion or Pt-modified aluminide) with commercial electron-beam physical vapor-deposited yttria-stabilized zirconia (YSZ) top coatings on second-generation superalloy N5 and N515 substrates and (2) high-velocity oxygen fuel (HVOF) sprayed MCrAlYHfSi bond coatings with air plasma-sprayed YSZ top coatings on superalloys X4, 1483, or 247 substrates. For both types of coatings exposed in 1-h cycles, the addition of water vapor resulted in a decrease in coating lifetime, except for Pt-diffusion coatings which were unaffected by the environment. In 100-h cycles, environment was less critical, perhaps because coating failure was chemical (i.e., due to interdiffusion) rather than mechanical. As a result, in both 1-h and 100-h cycles, CO2 did not appear to have any negative effect on coating lifetime.

Book Atomistic and Finite Element Modeling of Zirconia for Thermal Barrier Coating Applications

Download or read book Atomistic and Finite Element Modeling of Zirconia for Thermal Barrier Coating Applications written by Yi Zhang and published by . This book was released on 2014 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zirconia (ZrO2) is an important ceramic material with a broad range of applications. Due to its high melting temperature, low thermal conductivity, and high-temperature stability, zirconia based ceramics have been widely used for thermal barrier coatings (TBCs). When TBC is exposed to thermal cycling during real applications, the TBC may fail due to several mechanisms: (1) phase transformation into yttrium-rich and yttrium-depleted regions, When the yttrium-rich region produces pure zirconia domains that transform between monoclinic and tetragonal phases upon thermal cycling; and (2) cracking of the coating due to stress induced by erosion. The mechanism of erosion involves gross plastic damage within the TBC, often leading to ceramic loss and/or cracks down to the bond coat. The damage mechanisms are related to service parameters, including TBC material properties, temperature, velocity, particle size, and impact angle. The goal of this thesis is to understand the structural and mechanical properties of the thermal barrier coating material, thus increasing the service lifetime of gas turbine engines. To this end, it is critical to study the fundamental properties and potential failure mechanisms of zirconia. This thesis is focused on investigating the structural and mechanical properties of zirconia. There are mainly two parts studied in this paper, (1) ab initio calculations of thermodynamic properties of both monoclinic and tetragonal phase zirconia, and monoclinic-to-tetragonal phase transformation, and (2) image-based finite element simulation of the indentation process of yttria-stabilized zirconia. In the first part of this study, the structural properties, including lattice parameter, band structure, density of state, as well as elastic constants for both monoclinic and tetragonal zirconia have been computed. The pressure-dependent phase transition between tetragonal (t-ZrO2) and cubic zirconia (c-ZrO2) has been calculated using the density function theory (DFT) method. Phase transformation is defined by the band structure and tetragonal distortion changes. The results predict a transition from a monoclinic structure to a fluorite-type cubic structure at the pressure of 37 GPa. Thermodynamic property calculations of monoclinic zirconia (m-ZrO2) were also carried out. Temperature-dependent heat capacity, entropy, free energy, Debye temperature of monoclinic zirconia, from 0 to 1000 K, were computed, and they compared well with those reported in the literature. Moreover, the atomistic simulations correctly predicted the phase transitions of m-ZrO2 under compressive pressures ranging from 0 to 70 GPa. The phase transition pressures of monoclinic to orthorhombic I (3 GPa), orthorhombic I to orthorhombic II (8 GPa), orthorhombic II to tetragonal (37 GPa), and stable tetragonal phases (37-60 GPa) are in excellent agreement with experimental data. In the second part of this study, the mechanical response of yttria-stabilized zirconia under Rockwell superficial indentation was studied. The microstructure image based finite element method was used to validate the model using a composite cermet material. Then, the finite element model of Rockwell indentation of yttria-stabilized zirconia was developed, and the result was compared with experimental hardness data.

Book Thermo Physical Investigation of Partially Stabilized Zirconia

Download or read book Thermo Physical Investigation of Partially Stabilized Zirconia written by Sharma Kamal Raj and published by LAP Lambert Academic Publishing. This book was released on 2015-06-03 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the investigation of plasma sprayed Yttria partially stabilized zirconia (Y-PSZ) as thermal barrier coating (TBC). The thermal barrier coating, as the name suggests, is a coating of material of low thermal conductivity value, low enough to make it capable to reduce heat from the hot working fluid to penetrate into the substrate in high temperature applications like diesel engines, gas turbines etc. The investigation has been made in terms of thermal behaviour and thermo-physical behaviour of plasma sprayed Y-PSZ coating over aluminium (12 % by wt. Si) substrate using intermediate bond coat of Al2O3. An attempt has been made to determine the thermal effectiveness of coating for different thicknesses of Y-PSZ layer using Finite Element Methodology (FEM) based ANSYS simulation. An experimental work has also been conducted to investigate the thermal behaviour of coating and the coated specimen as compared to uncoated one, through oxy-acetylene flame testing. Same flame heating test has been performed to subject the coated surface to cyclic thermal loading conditions and flame punching experiment and the thermo-physical behaviour of the coating has been examined.

Book 7th Annual Conference on Composites and Advanced Ceramic Materials

Download or read book 7th Annual Conference on Composites and Advanced Ceramic Materials written by William J. Smothers and published by John Wiley & Sons. This book was released on 2009-09-28 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is part of the Ceramic Engineering and Science Proceeding (CESP) series. This series contains a collection of papers dealing with issues in both traditional ceramics (i.e., glass, whitewares, refractories, and porcelain enamel) and advanced ceramics. Topics covered in the area of advanced ceramic include bioceramics, nanomaterials, composites, solid oxide fuel cells, mechanical properties and structural design, advanced ceramic coatings, ceramic armor, porous ceramics, and more.