EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Investigation of Metal Oxide Optoelectronics Device Fabricated by Radio Frequency Magnetron Sputtering and Their Application

Download or read book Investigation of Metal Oxide Optoelectronics Device Fabricated by Radio Frequency Magnetron Sputtering and Their Application written by 李俊毅 and published by . This book was released on 2017 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Metal Oxides for Optoelectronics and Optics Based Medical Applications

Download or read book Metal Oxides for Optoelectronics and Optics Based Medical Applications written by Suresh Sagadevan and published by Elsevier. This book was released on 2022-07-01 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxides for Optoelectronics and Optics-based Medical Applications reviews recent advances in metal oxides and their mechanisms for optoelectronic, photoluminescent and medical applications. In addition, the book examines the integration of key chemistry concepts with nanoelectronics that can improve performance in a diverse range of applications. Sections place a strong emphasis on synthesis processes that can improve the metal oxides' physical properties and the reflected surface chemical changes that can impact their performance in various devices like light-emitting diodes, luminescence materials, solar cells, etc. Finally, the book discusses the challenges associated with the handling and maintenance of metal oxides crystalline properties. This book will be suitable for academics and those working in R&D in industry looking to learn more about cheaper and more effective methods to produce metal oxides for use in the fields of electronics, photonics, biophotonics and engineering. - Reviews the latest advances in the utilization of metal oxide materials in photonics, optoelectronics and optics-based medical applications - Considers the most relevant synthesis strategies for the development of high-performing metal oxide-based devices - Addresses a wide range of metal oxides including photonic crystals, fibers, metastructures, glasses, and more

Book Metal Oxides for Next generation Optoelectronic  Photonic  and Photovoltaic Applications

Download or read book Metal Oxides for Next generation Optoelectronic Photonic and Photovoltaic Applications written by Vijay Kumar and published by Elsevier. This book was released on 2023-09-15 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxides for Next Generation Optoelectronic, Photonic and Photovoltaic Applications focuses on the optoelectronic, photonic and photovoltaic behaviors of metallic oxides and closely related phenomena, from elementary principles to the latest findings. Each chapter includes a comprehensive evaluation of the synthesis and characterization of the most relevant metal oxides nanostructures for each application. In addition, there is a focus on methods to tune the materials’ properties in order to improve devices performance. This book is suitable for researchers and practitioners in academia and industry working in the disciplines of materials science and engineering, chemistry and physics. Metal oxides are widely used in various optoelectronic devices, photonics, display devices, smart windows, sensors, optical components, energy-saving, and harvesting devices. Each application requires materials with their own specific properties. By controlling the particle size, shape, crystal structure, one can tune various properties of metal oxides viz. bandgap, absorption properties, conductivity, which alter the material for the specific application. Includes discussions of synthesis and characterization of metal oxides materials for applications in next-generation optoelectronic, photonic and photovoltaic devices Emphasizes material design strategies of metal oxide nanostructures Focuses on the optoelectronic, photonic and photovoltaic behaviors of metallic oxides and closely related phenomena, from elementary principles to the latest findings

Book Metal Oxides for Optoelectronic and Resistive Switching Applications

Download or read book Metal Oxides for Optoelectronic and Resistive Switching Applications written by Oriol Blázquez and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Thesis has been focused on the fabrication and characterization of different CMOS- compatible materials in order to determine both their electro-optical and resistive switching properties. Basically, two materials have been explored, silicon-aluminum oxynitride (SiAlON) and zinc oxide (ZnO). The first material under study, SiAlON, has been fabricated using three techniques, namely RF-sputtering, pulsed-laser deposition and electron beam evaporation. In this case, different stoichiometries were analyzed in order to obtain excellent optical and electrical properties. The incorporation of different rare earths (REs) was also carried out, using Ce and Eu, which exhibited photoluminescence (PL) emission under laser excitation. The electro-optical characterization was performed after fabricating device structures onto p-type silicon substrates. The employed top electrode was selected depending on the characterization technique. To collect the electroluminescence (EL) from the devices a transparent conductive oxide (TCO) was required, using indium tin oxide (ITO) because of its excellent electrical and optical properties. Light emission was obtained from both devices, containing Ce and Eu, suggesting that SiAlON is a great candidate to be employed as RE host matrix. In addition, the resistive switching properties of these devices were analyzed as well, using Al as top electrical contact. Similar fabrication processes were carried out towards attaining rare earth (RE)-doped SiAlON. This was achieved by depositing a multilayered structure of Tb-Al/SiO2, which allowed determining the RE ions inclusion effectivity of the delta-doping approach. The optical characterization demonstrated PL emission from trivalent Tb3+ ions. Different (Al/Tb/SiO2) multilayer configurations were tested to optimize the number of active luminescent centers. Finally, the resistive switching properties of RE-doped SiO2 were also analyzed and the role of the RE ions within was explored as well. The second studied material was ZnO. In this case, the material was deposited onto p- type silicon via either RF-sputtering or atomic layer deposition (ALD) depending on the role of the deposited layer. While the first one was used to deposit the ZnO as RE host matrix, the second one was employed to attain a ZnO layer acting as TCO top electrode. In the first case, different REs (Tb and Eu) were tested. A clear PL emission of both REs was obtained. The narrow peak-like features in the spectra indicate the optical activation of the trivalent RE ions, being the ZnO an optimum host matrix for this kind of luminescent centers. To carry out the electrical characterization, device structures were attained using ITO as top TCO electrode. The EL from these devices was obtained, achieving similar spectra than the ones observed via PL. However, the luminescent degradation with time suggests the formation of conductive paths which effectively quench the EL emission. Taking into account this behavior, the resistive switching properties of these devices were analyzed, obtaining different cycles. The role of the REs in the resistive switching properties of ZnO was studied as well, allowing for a reduction of the current compliance in the electroforming process, but increasing the required voltages to induce the resistive switching phenomenon. Moreover, the incorporation of the REs into the ZnO host matrix permitted obtaining more stable Reset processes, which suggests that the REs near the conductive paths could trap part of the out-diffused oxygen ions and, consequently, the re-oxidation of these conductive paths becomes easier. Finally, when using a ZnO layer as top electrical contact, a multilayered SiOx/SiO2 structure was employed. After deposition, this structure was annealed at high temperature in order to induce the precipitation and crystallization of the silicon excess in the form of silicon nanocrystals (Si-NCs). The optical and electrical properties of these nanostructures are well known and have reported in previous works and doctoral theses of the research group. Therefore, the incorporation of the ZnO as TCO was implemented to determine the EL of the Si-NCs when current is injected under different electrical polarizations. Studies in DC and AC have been carried out, obtaining interesting results related to the modulation of the light emission from ZnO defects and enhancing the EL emission from the Si-NCs. The incorporation of a thin Si3N4 inversion layer, between the Si substrate and the multilayered Si-NCs, allowed modifying the injected current, thus obtaining an enhancement of the EL emission. These measurements confirmed the good electrical and optical properties of the ZnO working as TCO and permitted to understand the physical mechanisms involved in the EL process of the luminescent centers. In addition, the resistive switching properties of these devices were determined. In this case, devices presented some cycles with well defined resistive states. Under these resistive switching conditions, devices exhibit EL emission, being the intensity and the threshold voltage dependent on the resistive state. In conclusion, the results presented in this Thesis accomplish the initial pursued objectives, demonstrating the correlation between the EL emission and the resistive switching properties. Using these characteristics, the resistive state can be read not only electrically, but also optically from the emission of the luminescent centers through the TCO top electrode contact. Overall, these results pave the way to a new set of memory devices that can be, in a near future, integrated into the Photonics field, dominated by faster interconnections and less dependence to material transmission media.

Book Silicon Heterojunction Solar Cells

Download or read book Silicon Heterojunction Solar Cells written by W.R. Fahrner and published by Trans Tech Publications Ltd. This book was released on 2006-08-15 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made to reduce the production costs of “conventional” solar cells (manufactured from monocrystalline silicon using diffusion methods) by instead using cheaper grades of silicon, and simpler pn-junction fabrication. That is the ‘hero’ of this book; the heterojunction solar cell.

Book Oxide Electronics

Download or read book Oxide Electronics written by Asim K. Ray and published by John Wiley & Sons. This book was released on 2021-04-22 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oxide Electronics Multiple disciplines converge in this insightful exploration of complex metal oxides and their functions and properties Oxide Electronics delivers a broad and comprehensive exploration of complex metal oxides designed to meet the multidisciplinary needs of electrical and electronic engineers, physicists, and material scientists. The distinguished author eschews complex mathematics whenever possible and focuses on the physical and functional properties of metal oxides in each chapter. Each of the sixteen chapters featured within the book begins with an abstract and an introduction to the topic, clear explanations are presented with graphical illustrations and relevant equations throughout the book. Numerous supporting references are included, and each chapter is self-contained, making them perfect for use both as a reference and as study material. Readers will learn how and why the field of oxide electronics is a key area of research and exploitation in materials science, electrical engineering, and semiconductor physics. The book encompasses every application area where the functional and electronic properties of various genres of oxides are exploited. Readers will also learn from topics like: Thorough discussions of High-k gate oxide for silicon heterostructure MOSFET devices and semiconductor-dielectric interfaces An exploration of printable high-mobility transparent amorphous oxide semiconductors Treatments of graphene oxide electronics, magnetic oxides, ferroelectric oxides, and materials for spin electronics Examinations of the calcium aluminate binary compound, perovoksites for photovoltaics, and oxide 2Degs Analyses of various applications for oxide electronics, including data storage, microprocessors, biomedical devices, LCDs, photovoltaic cells, TFTs, and sensors Suitable for researchers in semiconductor technology or working in materials science, electrical engineering, and physics, Oxide Electronics will also earn a place in the libraries of private industry researchers like device engineers working on electronic applications of oxide electronics. Engineers working on photovoltaics, sensors, or consumer electronics will also benefit from this book.

Book Nanomaterials for Optoelectronic Applications

Download or read book Nanomaterials for Optoelectronic Applications written by Mohd Shkir and published by . This book was released on 2024-07-08 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shines a spotlight on the significance and usefulness of nanomaterials for the development of optoelectronic devices and their real-life applications. It presents an informative overview of the role of nanoscale materials in the development of advanced optoelectronic devices at nanoscale and discusses the applications of nanomaterials in different forms prepared by diverse techniques in the field of optoelectronic and biomedical devices. Major features, such as type of nanomaterials, fabrication methods, applications, tasks, benefits and restrictions, and saleable features, are well covered. Key features: - Explains the features of 0D, 1D, 2D and 3D nanomaterials - Exhibits the wide range of applications of nanomaterials in optoelectronics, photonics, biosensing, x-rays and x-ray detectors, medical imaging, visible light photodetectors, etc. - Discusses the advances in miniaturized nanoscale devices for biomedical applications - Describes the various preparation methods for advanced nanomaterials and their functionalization for fabrication of nanoelectronics devices

Book Oxide Electronics

Download or read book Oxide Electronics written by Asim K. Ray and published by John Wiley & Sons. This book was released on 2021-04-12 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oxide Electronics Multiple disciplines converge in this insightful exploration of complex metal oxides and their functions and properties Oxide Electronics delivers a broad and comprehensive exploration of complex metal oxides designed to meet the multidisciplinary needs of electrical and electronic engineers, physicists, and material scientists. The distinguished author eschews complex mathematics whenever possible and focuses on the physical and functional properties of metal oxides in each chapter. Each of the sixteen chapters featured within the book begins with an abstract and an introduction to the topic, clear explanations are presented with graphical illustrations and relevant equations throughout the book. Numerous supporting references are included, and each chapter is self-contained, making them perfect for use both as a reference and as study material. Readers will learn how and why the field of oxide electronics is a key area of research and exploitation in materials science, electrical engineering, and semiconductor physics. The book encompasses every application area where the functional and electronic properties of various genres of oxides are exploited. Readers will also learn from topics like: Thorough discussions of High-k gate oxide for silicon heterostructure MOSFET devices and semiconductor-dielectric interfaces An exploration of printable high-mobility transparent amorphous oxide semiconductors Treatments of graphene oxide electronics, magnetic oxides, ferroelectric oxides, and materials for spin electronics Examinations of the calcium aluminate binary compound, perovoksites for photovoltaics, and oxide 2Degs Analyses of various applications for oxide electronics, including data storage, microprocessors, biomedical devices, LCDs, photovoltaic cells, TFTs, and sensors Suitable for researchers in semiconductor technology or working in materials science, electrical engineering, and physics, Oxide Electronics will also earn a place in the libraries of private industry researchers like device engineers working on electronic applications of oxide electronics. Engineers working on photovoltaics, sensors, or consumer electronics will also benefit from this book.

Book Chemically Deposited Nanocrystalline Metal Oxide Thin Films

Download or read book Chemically Deposited Nanocrystalline Metal Oxide Thin Films written by Fabian I. Ezema and published by Springer Nature. This book was released on 2021-06-26 with total page 926 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book guides beginners in the areas of thin film preparation, characterization, and device making, while providing insight into these areas for experts. As chemically deposited metal oxides are currently gaining attention in development of devices such as solar cells, supercapacitors, batteries, sensors, etc., the book illustrates how the chemical deposition route is emerging as a relatively inexpensive, simple, and convenient solution for large area deposition. The advancement in the nanostructured materials for the development of devices is fully discussed.

Book JJAP

    Book Details:
  • Author :
  • Publisher :
  • Release : 2009
  • ISBN :
  • Pages : 662 pages

Download or read book JJAP written by and published by . This book was released on 2009 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Transparent Electronics

Download or read book Transparent Electronics written by Elvira Fortunato and published by . This book was released on with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Chemical Abstracts

Download or read book Chemical Abstracts written by and published by . This book was released on 2002 with total page 2692 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Zinc Oxide

Download or read book Zinc Oxide written by Hadis Morkoç and published by John Wiley & Sons. This book was released on 2008-12-03 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first systematic, authoritative and thorough treatment in one comprehensive volume presents the fundamentals and technologies of the topic, elucidating all aspects of ZnO materials and devices. Following an introduction, the authors look at the general properties of ZnO, as well as its growth, optical processes, doping and ZnO-based dilute magnetic semiconductors. Concluding sections treat bandgap engineering, processing and ZnO nanostructures and nanodevices. Of interest to device engineers, physicists, and semiconductor and solid state scientists in general.

Book Journal of the Physical Society of Japan

Download or read book Journal of the Physical Society of Japan written by and published by . This book was released on 2001 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Zinc Oxide Nanostructures

Download or read book Zinc Oxide Nanostructures written by Magnus Willander and published by CRC Press. This book was released on 2014-07-22 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zinc oxide (ZnO) in its nanostructured form is emerging as a promising material with great potential for the development of many smart electronic devices. This book presents up-to-date information about various synthesis methods to obtain device-quality ZnO nanostructures. It describes both high-temperature (over 100 C) and low-temperature (under