EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Investigation of Grain scale Microstructural Variability in Tantalum Using Crystal Plasticity finite Element Simulations

Download or read book Investigation of Grain scale Microstructural Variability in Tantalum Using Crystal Plasticity finite Element Simulations written by and published by . This book was released on 2016 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this research, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions. Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2-7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress-strain response of polycrystals that can be attributed to the grain-scale microstructural variability. In conclusion, this work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.

Book Multi scale Modeling of Plasticity in Tantalum

Download or read book Multi scale Modeling of Plasticity in Tantalum written by and published by . This book was released on 2015 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this report, we present a multi-scale computational model to simulate plastic deformation of tantalum and validating experiments. In atomistic/ dislocation level, dislocation kink- pair theory is used to formulate temperature and strain rate dependent constitutive equations. The kink-pair theory is calibrated to available data from single crystal experiments to produce accurate and convenient constitutive laws. The model is then implemented into a BCC crystal plasticity finite element method (CP-FEM) model to predict temperature and strain rate dependent yield stresses of single and polycrystalline tantalum and compared with existing experimental data from the literature. Furthermore, classical continuum constitutive models describing temperature and strain rate dependent flow behaviors are fit to the yield stresses obtained from the CP-FEM polycrystal predictions. The model is then used to conduct hydro- dynamic simulations of Taylor cylinder impact test and compared with experiments. In order to validate the proposed tantalum CP-FEM model with experiments, we introduce a method for quantitative comparison of CP-FEM models with various experimental techniques. To mitigate the effects of unknown subsurface microstructure, tantalum tensile specimens with a pseudo-two-dimensional grain structure and grain sizes on the order of millimeters are used. A technique combining an electron back scatter diffraction (EBSD) and high resolution digital image correlation (HR-DIC) is used to measure the texture and sub-grain strain fields upon uniaxial tensile loading at various applied strains. Deformed specimens are also analyzed with optical profilometry measurements to obtain out-of- plane strain fields. These high resolution measurements are directly compared with large-scale CP-FEM predictions. This computational method directly links fundamental dislocation physics to plastic deformations in the grain-scale and to the engineering-scale applications. Furthermore, direct and quantitative comparisons between experimental measurements and simulation show that the proposed model accurately captures plasticity in deformation of polycrystalline tantalum.

Book Numerical Simulations of Microstructure based Crystal Plasticity Finite Element Model for Titanium and Nickel Alloys

Download or read book Numerical Simulations of Microstructure based Crystal Plasticity Finite Element Model for Titanium and Nickel Alloys written by Erik Nugroho Tedjaseputra and published by . This book was released on 2012 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the second part, the crystal plasticity method undergo further expansion to accommodate the multi-scale approach in modeling Ni-superalloy response. In the lowest scale, dislocation density model developed by Samal, M.K., and Ghosh, S., used to model the sub-grain scale. Then, in the grain and polycrystalline scale, activation-energy crystal plasticity model is used with homogenization law to bridge the sub-grain and grain scale, along with asymmetry and microtwinning mechanism. This thesis will discuss heavily on the incorporation of thermally activated theory of plastic law into crystal plasticity formulation for grain and polycrystalline scale. Development of homogenization law for the grain level based on microstructure parameters; gamma prime-precipitate shape (n1), volume fraction (vf) and spacing between precipitates (lc), and microtwinning mechanism will also be discussed briefly. Finally, the thesis presents simulation validation case for the multi-scale model of polycrystalline sample for constant strain test using calibrated model from single crystal experiment of CMSX-4 Ni-based superalloys.

Book Grain Size Dependent Crystal Plasticity Finite Element Model for Deformation and Creep Studies in Polycrystalline Ti 6242

Download or read book Grain Size Dependent Crystal Plasticity Finite Element Model for Deformation and Creep Studies in Polycrystalline Ti 6242 written by Gayathri Venkataramani and published by . This book was released on 2007 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: This thesis is aimed at identifying the critical microstructural parameters that cause local stress concentration due to load shedding between microstructural regions of varying strengths, proposed as one of the fundamental reasons for crack initiation in Ti-6242. A rate dependent, anisotropic, elasto-crystal plasticity based finite element model developed for polyphase Ti-6242 that can account for various microstructural features is used in the present study. A size effect model that relates hardness with the grain size, colony size and lath size in the microstructure of polycrystalline Ti-6242 is developed using different characteristic lengths for different slip systems in the primary fL and transformed 13 regions based on the slip direction. The initial slip system deformation resistances in the crystal plasticity relations are expressed as Hall-Petch type relations based on models of dislocation pileup for various deformation modes. The size-effect parameters are determined from single crystal and colony experiments. The model is validated by comparing the results of simulation with those from constant strain rate and creep tests on polyphase-polycrystalline Ti-6242. The validated model is further used to obtain macroscopic flow stress dependence on grain size and lath size in Ti-6242 through constant strain rate simulations. It is also used to understand the effect of grain size and shape on load-shedding between hard and soft oriented grains and to identify critical microstructural and macrostructural variables responsible for localized stress concentration due to load shedding phenomenon. Various microstructural variables such as grain orientation, misorientation, grain size and Schmid factor and macroscopic variables like composition of phases is considered in a detailed parametric study and the critical combinations of these parameters that result in high stress due to load shedding is identified. Finally load shedding in a realistic microstructure model for polycrystalline Ti-6242 is discussed in which accurate phase volume fractions and orientation and size distributions that are statistically equivalent to those observed in OIM scans are incorporated. The 3D microstructure model accounts for grain shape complexity in load shedding phenomenon and helps in the identification of local hot spots in a realistic microstructure.

Book Crystal Plasticity Finite Element Methods

Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Book Scale Effects in Crystal Plasticity

Download or read book Scale Effects in Crystal Plasticity written by Guruprasad Padubidri Janardhanachar and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this research work is to further the understanding of crystal plasticity, particularly at reduced structural and material length scales. Fundamental understanding of plasticity is central to various challenges facing design and manufacturing of materials for structural and electronic device applications. The development of microstructurally tailored advanced metallic materials with enhanced mechanical properties that can withstand extremes in stress, strain, and temperature, will aid in increasing the efficiency of power generating systems by allowing them to work at higher temperatures and pressures. High specific strength materials can lead to low fuel consumption in transport vehicles. Experiments have shown that enhanced mechanical properties can be obtained in materials by constraining their size, microstructure (e.g. grain size), or both for various applications. For the successful design of these materials, it is necessary to have a thorough understanding of the influence of different length scales and evolving microstructure on the overall behavior. In this study, distinction is made between the effect of structural and material length scale on the mechanical behavior of materials. A length scale associated with an underlying physical mechanism influencing the mechanical behavior can overlap with either structural length scales or material length scales. If it overlaps with structural length scales, then the material is said to be dimensionally constrained. On the other hand, if it overlaps with material length scales, for example grain size, then the material is said to be microstructurally constrained. The objectives of this research work are: (1) to investigate scale and size effects due to dimensional constraints; (2) to investigate size effects due to microstructural constraints; and (3) to develop a size dependent hardening model through coarse graining of dislocation dynamics. A discrete dislocation dynamics (DDD) framework where the scale of analysis is intermediate between a fully discretized (e.g. atomistic) and fully continuum is used for this study. This mesoscale tool allows to address all the stated objectives of this study within a single framework. Within this framework, the effect of structural and the material length scales are naturally accounted for in the simulations and need not be specified in an ad hoc manner, as in some continuum models. It holds the promise of connecting the evolution of the defect microstructure to the effective response of the crystal. Further, it provides useful information to develop physically motivated continuum models to model size effects in materials. The contributions of this study are: (a) provides a new interpretation of mechanical size effect due to only dimensional constraint using DDD; (b) a development of an experimentally validated DDD simulation methodology to model Cu micropillars; (c) a coarse graining technique using DDD to develop a phenomenological model to capture size effect on strain hardening; and (d) a development of a DDD framework for polycrystals to investigate grain size effect on yield strength and strain hardening.

Book Modelling Microstructure property Relationships in Polycrystalline Metals Using New Fast Fourier Transform based Crystal Plasticity Frameworks

Download or read book Modelling Microstructure property Relationships in Polycrystalline Metals Using New Fast Fourier Transform based Crystal Plasticity Frameworks written by Jaspreet Singh Nagra and published by . This book was released on 2019 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present thesis develops several new full-field, fast Fourier transform (FFT)-based crystal plasticity modelling tools for microstructure engineering. These tools are used to explore elasto-viscoplastic deformation, localized deformation, 3D grain morphology, microstructure evolution, dynamic recrystallization and their effects on formability of polycrystalline metals with particular attention paid to sheet alloys of aluminum and magnesium. The new FFT-based crystal plasticity models developed in this work overcome several inherent problems present in the well-known crystal plasticity finite element method (CP-FEM) and elasto-viscoplastic fast Fourier transform method (EVP-FFT) in solving representative volume element (RVE)-based problems. The new models have demonstrated significant fidelity in simulating various deformation phenomena in polycrystalline metals and prove to be faster and accurate alternatives for obtaining full-field solutions of micromechanical fields in aluminum and magnesium sheet alloys. In particular to the aluminum alloys, which are currently replacing heavier steel parts in the automotive industry, the sheet aluminum alloys have significantly improved corrosion resistance and strength-to-weight properties in comparison to steel. However, aluminum alloys are still outperformed by steel in terms of formability. To improve the formability of an aluminum sheet, one method is to develop physics-based predictive computational tools, which can accurately and efficiently predict the behavior of aluminum alloys and thus allow designing the microstructure with desired properties. Accordingly, in first part of this thesis, a novel numerical framework for modelling large deformation in aluminum alloys is developed. The developed framework incorporates the rate-dependent crystal plasticity theory into the fast Fourier transform (FFT)-based formulation, and this is named as rate tangent crystal plasticity-based fast Fourier transform (i.e., RTCP-FFT) framework. This framework is used as a predictive tool for obtaining stress-strain response and texture evolution in new strain-paths with minimal calibration for aluminum alloys. The RTCP-FFT framework is benchmarked against an existing FFT-based model at small strains and finite element-based model at large strains, respectively, for the case of an artificial Face Centered Cubic (FCC) polycrystal. The predictive capability as well as the computational efficiency of the developed framework are then demonstrated for aluminum alloy (AA) 5754. In the second part of this thesis, the RTCP-FFT framework, developed earlier, is coupled with the Marciniak and Kuczynski (MK) approach to establish a new full-field framework for generating forming limit diagrams (FLDs) of aluminum sheet alloys, e.g., AA3003 and AA5754. The new coupled framework is able to investigate the complex effects of grain morphology, local deformation, local texture and grain interactions on the predictions of forming limit strains. This study reveals that among the various microstructural features, the grain morphology has the strongest effect on the predicted FLDs for aluminum alloys. Furthermore, this study also suggests that the FLD predictions can be significantly improved if the actual grain structure of the material is properly accounted for in the crystal plasticity models. In addition to aluminum alloys, magnesium alloys are getting significant attention by the automotive industry due to their light weight and high specific strength. However, the automotive industry has not been able to take full advantage of the lightweight characteristic of magnesium alloys because of their poor formability at room temperature. Therefore, to enhance the workability and restore their ductility, the magnesium alloys are formed at elevated temperature. High temperature forming of magnesium alloys is often accompanied by dynamic recrystallization (DRX), which allows the final microstructure, as well as the properties of the material (e.g., initial grain size, initial texture, etc.), to be controlled. Therefore, DRX coupled with a full-field crystal plasticity FLD framework can be used as a tool to design microstructure of a material. Since it would be beneficial to be able to redesign the material properties of magnesium alloys using physics-based computational tools than using physical experiments, this work takes a step ahead towards such an outcome by presenting a new framework that predicts DRX and models its effects on the formability of magnesium alloys. Accordingly, in the third part of this thesis, a new full-field, efficient and mesh-free numerical framework, to model microstructure evolution, dynamic recrystallization (DRX) and formability in hexagonal closed-packed (HCP) metals such as magnesium alloys at warm temperatures, is developed. This coupled framework combines three new FFT-based approaches, namely: (a) crystal plasticity modelling of HCP alloys, (b) DRX model, and (c) MK model. First, a rate tangent-fast Fourier transform-based elasto-viscoplastic crystal plasticity constitutive model for HCP metals (RTCP-FFT-HCP) is developed. Then, it is coupled with a probabilistic cellular automata (CA) approach to model DRX. Furthermore, this new model is coupled with the Marciniak-Kuczynski (M-K) approach to model formability of magnesium alloys at elevated temperatures. The RTCP-FFT-HCP model computes macro stress-strain response, twinning volume fraction, micromechanical fields, texture evolution and local dislocation density. Nucleation of new grains and their subsequent growth is modeled using the cellular automata approach with probabilistic state switching rule. This framework is validated at each level of the coupling for magnesium sheet alloy, AZ31. First, the RTCP-FFT-HCP model is validated by comparing the simulated macro stress-strain responses under uniaxial tension and compression with experimental measurements at room temperature. Furthermore, the texture evolution predicted with the new model is compared with experiments. The predictions show a good agreement with experiments with high degree of accuracy. Next, the forming limit diagrams (FLDs) are simulated at 100 C, 200 C and 300 C, respectively, for AZ31 sheet alloy considering the effects of DRX. The predicted FLDs show very good agreement with the experimental measurements. The study reveals that the DRX strongly affects the deformed grain structure, grain size and texture evolution and also highlights the importance accounting for DRX during FLD simulations at high temperatures.

Book Texture and Anisotropy

    Book Details:
  • Author : U. F. Kocks
  • Publisher : Cambridge University Press
  • Release : 2000-08-15
  • ISBN : 9780521794206
  • Pages : 672 pages

Download or read book Texture and Anisotropy written by U. F. Kocks and published by Cambridge University Press. This book was released on 2000-08-15 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: A successful book covering an important area of materials science, now available in paperback.

Book Dislocations  Mesoscale Simulations and Plastic Flow

Download or read book Dislocations Mesoscale Simulations and Plastic Flow written by Ladislas Kubin and published by OUP Oxford. This book was released on 2013-04-18 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past twenty years, new experimental approaches, improved models and progress in simulation techniques brought new insights into long-standing issues concerning dislocation-based plasticity in crystalline materials. During this period, three-dimensional dislocation dynamics simulations appeared and reached maturity. Their objectives are to unravel the relation between individual and collective dislocation processes at the mesoscale, to establish connections with atom-scale studies of dislocation core properties and to bridge, in combination with modelling, the gap between defect properties and phenomenological continuum models for plastic flow. Dislocation dynamics simulations are becoming accessible to a wide range of users. This book presents to students and researchers in materials science and mechanical engineering a comprehensive coverage of the physical body of knowledge on which they are based. It includes classical studies, which are too often ignored, recent experimental and theoretical advances, as well as a discussion of selected applications on various topics.

Book Laser Additive Manufacturing

Download or read book Laser Additive Manufacturing written by Milan Brandt and published by Woodhead Publishing. This book was released on 2016-09-01 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Laser Additive Manufacturing: Materials, Design, Technologies, and Applications provides the latest information on this highly efficient method of layer-based manufacturing using metals, plastics, or composite materials. The technology is particularly suitable for the production of complex components with high precision for a range of industries, including aerospace, automotive, and medical engineering. This book provides a comprehensive review of the technology and its range of applications. Part One looks at materials suitable for laser AM processes, with Part Two discussing design strategies for AM. Parts Three and Four review the most widely-used AM technique, powder bed fusion (PBF) and discuss other AM techniques, such as directed energy deposition, sheet lamination, jetting techniques, extrusion techniques, and vat photopolymerization. The final section explores the range of applications of laser AM. Provides a comprehensive one-volume overview of advances in laser additive manufacturing Presents detailed coverage of the latest techniques used for laser additive manufacturing Reviews both established and emerging areas of application

Book Introduction to Texture Analysis

Download or read book Introduction to Texture Analysis written by Olaf Engler and published by CRC Press. This book was released on 2009-11-16 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping broke new ground by collating seventy years worth of research in a convenient single-source format. Reflecting emerging methods and the evolution of the field, the second edition continues to provide comprehensive coverage of the concepts, pra

Book Plasticity and Beyond

    Book Details:
  • Author : Jörg Schröder
  • Publisher : Springer Science & Business Media
  • Release : 2013-09-20
  • ISBN : 3709116252
  • Pages : 417 pages

Download or read book Plasticity and Beyond written by Jörg Schröder and published by Springer Science & Business Media. This book was released on 2013-09-20 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.

Book Computational Materials Science

Download or read book Computational Materials Science written by Dierk Raabe and published by Wiley-VCH. This book was released on 1998-10-27 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling and simulation play an ever increasing role in the development and optimization of materials. Computational Materials Science presents the most important approaches in this new interdisciplinary field of materials science and engineering. The reader will learn to assess which numerical method is appropriate for performing simulations at the various microstructural levels and how they can be coupled. This book addresses graduate students and professionals in materials science and engineering as well as materials-oriented physicists and mechanical engineers.

Book Strengthening Mechanisms in Crystal Plasticity

Download or read book Strengthening Mechanisms in Crystal Plasticity written by Ali Argon and published by Oxford University Press on Demand. This book was released on 2008 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technologically important metals and alloys have been strengthened throughout history by empirical means. The scientific bases of the central mechanisms of such forms of strengthening, developed over the past several decades are presented here through mechanistic models and associated experimental results.

Book Material Forming

Download or read book Material Forming written by Anna Carla Araujo and published by Materials Research Forum LLC. This book was released on 2024-05-20 with total page 2957 pages. Available in PDF, EPUB and Kindle. Book excerpt: These ESAFORM 2024 conference proceedings cover a wide range of topics: Additive manufacturing; Composites forming processes; Extrusion and drawing; Forging and rolling; Formability of metallic materials; Friction and wear in metal forming; Incremental and sheet metal forming; Innovative joining by forming technologies; Optimization and inverse analysis in forming; Machining, Cutting and severe plastic deformation processes; Material behavior modelling; New and advanced numerical strategies for material forming; Non-conventional processes; Polymer processing and thermomechanical properties; Sustainability on material forming. Keywords: WAAM Technology, Fused deposition Modeling (FDM), Fiber Composite Printers, Ultrasonic Powder Atomization, Finite Element Modeling (FEM), Laser Powder Bed Fusion (L-PBF), Rapid Prototyping in Additive Manufacturing, Directed Energy Deposition (DED), GTAW Droplet Deposition, Deep Learning, Thermoplastic Pultrusion, Textile Reinforcements, Thermoforming Simulation, New Sustainable Materials, Non-Crimp Fabrics, CFRP Scraps, PEEK Composites, Thermoplastic Sheets, Flax/PP Composites.

Book Practical Aspects of Computational Chemistry

Download or read book Practical Aspects of Computational Chemistry written by Jerzy Leszczynski and published by Springer Science & Business Media. This book was released on 2009-10-03 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Practical Aspects of Computational Chemistry" presents contributions on a range of aspects of Computational Chemistry applied to a variety of research fields. The chapters focus on recent theoretical developments which have been used to investigate structures and properties of large systems with minimal computational resources. Studies include those in the gas phase, various solvents, various aspects of computational multiscale modeling, Monte Carlo simulations, chirality, the multiple minima problem for protein folding, the nature of binding in different species and dihydrogen bonds, carbon nanotubes and hydrogen storage, adsorption and decomposition of organophosphorus compounds, X-ray crystallography, proton transfer, structure-activity relationships, a description of the REACH programs of the European Union for chemical regulatory purposes, reactions of nucleic acid bases with endogenous and exogenous reactive oxygen species and different aspects of nucleic acid bases, base pairs and base tetrads.