EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mixed Phase Clouds

    Book Details:
  • Author : Constantin Andronache
  • Publisher : Elsevier
  • Release : 2017-09-28
  • ISBN : 012810550X
  • Pages : 302 pages

Download or read book Mixed Phase Clouds written by Constantin Andronache and published by Elsevier. This book was released on 2017-09-28 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixed-Phase Clouds: Observations and Modeling presents advanced research topics on mixed-phase clouds. As the societal impacts of extreme weather and its forecasting grow, there is a continuous need to refine atmospheric observations, techniques and numerical models. Understanding the role of clouds in the atmosphere is increasingly vital for current applications, such as prediction and prevention of aircraft icing, weather modification, and the assessment of the effects of cloud phase partition in climate models. This book provides the essential information needed to address these problems with a focus on current observations, simulations and applications. Provides in-depth knowledge and simulation of mixed-phase clouds over many regions of Earth, explaining their role in weather and climate Features current research examples and case studies, including those on advanced research methods from authors with experience in both academia and the industry Discusses the latest advances in this subject area, providing the reader with access to best practices for remote sensing and numerical modeling

Book Evaluation of Mixed Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model  SCAM  and ARM Observations

Download or read book Evaluation of Mixed Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model SCAM and ARM Observations written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixed-phase stratus clouds are ubiquitous in the Arctic and play an important role in climate in this region. However, climate models have generally proven unsuccessful at simulating the partitioning of condensed water into liquid droplets and ice crystals in these Arctic clouds, which affect modeled cloud phase, cloud lifetime and radiative properties. An ice nucleation parameterization and a vapor deposition scheme were developed that together provide a physically-consistent treatment of mixed-phase clouds in global climate models. These schemes have been implemented in the National Center for Atmospheric Research (NCAR) Community Atmospheric Model Version 3 (CAM3). This report documents the performance of these schemes against ARM Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the CAM single column model version (SCAM). SCAM with our new schemes has a more realistic simulation of the cloud phase structure and the partitioning of condensed water into liquid droplets against observations during the M-PACE than the standard CAM simulations.

Book A Modeling Case Study of Post frontal Mixed phase Clouds in the Marine Boundary Layer Over the Southern Ocean in MARCUS

Download or read book A Modeling Case Study of Post frontal Mixed phase Clouds in the Marine Boundary Layer Over the Southern Ocean in MARCUS written by Yishi Hu and published by . This book was released on 2021 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt: A multi-day period (February 23-26, 2018) of post-frontal shallow convective mixed-phase clouds observed during the shipborne Measurements of Aerosols, Radiation and CloUds over the Southern Ocean (MARCUS) field campaign is studied using the Weather Research and Forecast (WRF) model with the aim of understanding ice production as well as model sensitivity to ice process parameterizations. The Cloud-resolving model Radar SIMulator (CRSIM) is firstly used in this study to convert WRF S-band output into W-band radar observables. Comparisons between the observations and simulations suggest that the model captures the observed synoptic pattern and shallow convective nature of the mixed-phase clouds. The simulated clouds are mostly precipitating and liquid dominated. Interestingly, the control simulation significantly underestimates the ice content and overestimates the supercooled liquid water, which is contrary to the bias common in global climate models. Sensitivity simulations targeted at ice production processes suggest that the rime splintering process is not a primary contributor and that the simulated clouds show negligible sensitivity to cloud droplet number concentrations. Higher number concentrations of ice nuclei do not guarantee more ice production overall. However, the simulated mixed-phase clouds are found to be highly sensitive to the implementation of immersion freezing and condensation/deposition freezing. By increasing immersion freezing of cloud droplets or relaxing thresholds for condensation/deposition freezing, the model significantly improves its performance in producing ice. The key results of this work call for an increase in observations of ice nuclei, especially over the remote Southern Ocean and at relatively high temperatures.

Book Improving Mixed phase Cloud Parameterization in Climate Model with the ACRF Measurements

Download or read book Improving Mixed phase Cloud Parameterization in Climate Model with the ACRF Measurements written by and published by . This book was released on 2016 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixed-phase cloud microphysical and dynamical processes are still poorly understood, and their representation in GCMs is a major source of uncertainties in overall cloud feedback in GCMs. Thus improving mixed-phase cloud parameterizations in climate models is critical to reducing the climate forecast uncertainties. This study aims at providing improved knowledge of mixed-phase cloud properties from the long-term ACRF observations and improving mixed-phase clouds simulations in the NCAR Community Atmosphere Model version 5 (CAM5). The key accomplishments are: 1) An improved retrieval algorithm was developed to provide liquid droplet concentration for drizzling or mixed-phase stratiform clouds. 2) A new ice concentration retrieval algorithm for stratiform mixed-phase clouds was developed. 3) A strong seasonal aerosol impact on ice generation in Arctic mixed-phase clouds was identified, which is mainly attributed to the high dust occurrence during the spring season. 4) A suite of multi-senor algorithms was applied to long-term ARM observations at the Barrow site to provide a complete dataset (LWC and effective radius profile for liquid phase, and IWC, Dge profiles and ice concentration for ice phase) to characterize Arctic stratiform mixed-phase clouds. This multi-year stratiform mixed-phase cloud dataset provides necessary information to study related processes, evaluate model stratiform mixed-phase cloud simulations, and improve model stratiform mixed-phase cloud parameterization. 5). A new in situ data analysis method was developed to quantify liquid mass partition in convective mixed-phase clouds. For the first time, we reliably compared liquid mass partitions in stratiform and convective mixed-phase clouds. Due to the different dynamics in stratiform and convective mixed-phase clouds, the temperature dependencies of liquid mass partitions are significantly different due to much higher ice concentrations in convective mixed phase clouds. 6) Systematic evaluations of mixed-phase cloud simulations by CAM5 were performed. Measurement results indicate that ice concentrations control stratiform mixed-phase cloud properties. The improvement of ice concentration parameterization in the CAM5 was done in close collaboration with Dr. Xiaohong Liu, PNNL (now at University of Wyoming).

Book Evaluation of Mixed Phase Cloud Parameterizations in Short Range Weather Forecasts with CAM3 and AM2 for Mixed Phase Arctic Cloud Experiment

Download or read book Evaluation of Mixed Phase Cloud Parameterizations in Short Range Weather Forecasts with CAM3 and AM2 for Mixed Phase Arctic Cloud Experiment written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: By making use of the in-situ data collected from the recent Atmospheric Radiation Measurement Mixed-Phase Arctic Cloud Experiment, we have tested the mixed-phase cloud parameterizations used in the two major U.S. climate models, the National Center for Atmospheric Research Community Atmosphere Model version 3 (CAM3) and the Geophysical Fluid Dynamics Laboratory climate model (AM2), under both the single-column modeling framework and the U.S. Department of Energy Climate Change Prediction Program-Atmospheric Radiation Measurement Parameterization Testbed. An improved and more physically based cloud microphysical scheme for CAM3 has been also tested. The single-column modeling tests were summarized in the second quarter 2007 Atmospheric Radiation Measurement metric report. In the current report, we document the performance of these microphysical schemes in short-range weather forecasts using the Climate Chagne Prediction Program Atmospheric Radiation Measurement Parameterizaiton Testbest strategy, in which we initialize CAM3 and AM2 with realistic atmospheric states from numerical weather prediction analyses for the period when Mixed-Phase Arctic Cloud Experiment was conducted.

Book An Introduction to Clouds

    Book Details:
  • Author : Ulrike Lohmann
  • Publisher : Cambridge University Press
  • Release : 2016-06-23
  • ISBN : 1316586251
  • Pages : 419 pages

Download or read book An Introduction to Clouds written by Ulrike Lohmann and published by Cambridge University Press. This book was released on 2016-06-23 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Clouds provides a fundamental understanding of clouds, ranging from cloud microphysics to the large-scale impacts of clouds on climate. On the microscale, phase changes and ice nucleation are covered comprehensively, including aerosol particles and thermodynamics relevant for the formation of clouds and precipitation. At larger scales, cloud dynamics, mid-latitude storms and tropical cyclones are discussed leading to the role of clouds on the hydrological cycle and climate. Each chapter ends with problem sets and multiple-choice questions that can be completed online, and important equations are highlighted in boxes for ease of reference. Combining mathematical formulations with qualitative explanations of underlying concepts, this accessible book requires relatively little previous knowledge, making it ideal for advanced undergraduate and graduate students in atmospheric science, environmental sciences and related disciplines.

Book Parameterization of Clouds and Radiation in Climate Models

Download or read book Parameterization of Clouds and Radiation in Climate Models written by and published by . This book was released on 1995 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clouds are a very important, yet poorly modeled element in the climate system. There are many potential cloud feedbacks, including those related to cloud cover, height, water content, phase change, and droplet concentration and size distribution. As a prerequisite to studying the cloud feedback issue, this research reports on the simulation and validation of cloud radiative forcing under present climate conditions using the ECHAM general circulation model and ERBE top-of-atmosphere radiative fluxes.

Book Testing Cloud Microphysics Parameterizations and Improving the Representation of the Wegner Bergeron Findeisen Process in Mixed phase Clouds in NCAR CAM5

Download or read book Testing Cloud Microphysics Parameterizations and Improving the Representation of the Wegner Bergeron Findeisen Process in Mixed phase Clouds in NCAR CAM5 written by Meng Zhang and published by . This book was released on 2017 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixed-phase clouds are persistently observed in the Arctic and the phase partition of cloud liquid and ice in mixed-phase clouds has important impacts on the surface energy budget and Arctic climate. In this study, we test the NCAR Community Atmosphere Model Version 5 (CAM5) in the single-column and weather forecast modes and evaluate the model performance against observation data obtained during the DOE Atmospheric Radiation Measurement (ARM) Program’s M-PACE field campaign in October 2004 and long-term ground-based multi-sensor measurements. We find that CAM5, like other global climate models, poorly simulates the phase partition in mixed-phase clouds by significantly underestimating the cloud liquid water content. An assumption of the pocket structure in the distribution of cloud liquid and ice based on in situ observations inside mixed-phase clouds has provided a possible solution to improve the model performance by reducing the Wegner-Bergeron-Findeisen (WBF) process rate. In this study, the modification of the WBF process in the CAM5 model has been achieved with applying a stochastic perturbation to the time scale of the WBF process relevant to both ice and snow to account for the heterogeneous mixture of cloud liquid and ice. Our results show that the modification of the WBF process improves the modeled phase partition in mixed-phase clouds. The seasonality of mixed-phase cloud properties is also better captured in the model compared with long-term ground-based remote sensing observations. Furthermore, the phase partitioning is insensitive to the reassignment time step of perturbations.

Book Arctic mixed phase clouds   Macro  and microphysical insights with a numerical model

Download or read book Arctic mixed phase clouds Macro and microphysical insights with a numerical model written by Loewe, Katharina and published by KIT Scientific Publishing. This book was released on 2017-09-15 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work provides new insights into macro- and microphysical properties of Arctic mixed-phase clouds: first, by comparing semi-idealized large eddy simulations with observations; second, by dissecting the influences of different surface types and boundary layer structures on Arctic mixed- phase clouds; third, by elucidating the dissipation process; and finally by analyzing the main microphysical processes inside Arctic mixed-phase clouds.

Book Simulating Mixed phase Arctic Stratus Clouds

Download or read book Simulating Mixed phase Arctic Stratus Clouds written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM) scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE) campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP) on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during October 9th-10th, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-hour simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity) against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process of ice phase initiation due to freezing of supercooled water in both saturated and subsaturated (w.r.t. water) environments is as important as primary ice crystal origination from water vapor. We also find that the BFP is a process mainly responsible for the rates of glaciation of simulated clouds. These glaciation rates cannot be adequately represented by a water-ice saturation adjustment scheme that only depends on temperature and liquid and solid hydrometeors contents as is widely used in bulk microphysics schemes and are better represented by processes that also account for supersaturation changes as the hydrometeors grow.

Book Evaluation of A New Mixed Phase Cloud Microphysics Parameterization with the NCAR Climate Atmospheric Model  CAM3  and ARM Observations Fourth Quarter 2007 ARM Metric Report

Download or read book Evaluation of A New Mixed Phase Cloud Microphysics Parameterization with the NCAR Climate Atmospheric Model CAM3 and ARM Observations Fourth Quarter 2007 ARM Metric Report written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixed-phase clouds are composed of a mixture of cloud droplets and ice crystals. The cloud microphysics in mixed-phase clouds can significantly impact cloud optical depth, cloud radiative forcing, and cloud coverage. However, the treatment of mixed-phase clouds in most current climate models is crude and the partitioning of condensed water into liquid droplets and ice crystals is prescribed as temperature dependent functions. In our previous 2007 ARM metric reports a new mixed-phase cloud microphysics parameterization (for ice nucleation and water vapor deposition) was documented and implemented in the NCAR Community Atmospheric Model Version 3 (CAM3). The new scheme was tested against the Atmospheric Radiation Measurement (ARM) Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the single column modeling and short-range weather forecast approaches. In this report this new parameterization is further tested with CAM3 in its climate simulations. It is shown that the predicted ice water content from CAM3 with the new parameterization is in better agreement with the ARM measurements at the Southern Great Plain (SGP) site for the mixed-phase clouds.

Book Simulating Mixed phase Arctic Stratus Clouds

Download or read book Simulating Mixed phase Arctic Stratus Clouds written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM) scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE) campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP) on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during 9th-10th October, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-h simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity) against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process of ice phase initiation due to freezing of supercooled water in both saturated and undersaturated (w.r.t. water) environments is as important as primary ice crystal origination from water vapor. We also find that the BFP is a process mainly responsible for the rates of glaciation of simulated clouds. These glaciation rates cannot be adequately represented by a water-ice saturation adjustment scheme that only depends on temperature and liquid and solid hydrometeors contents as is widely used in bulk microphysics schemes and are better represented by processes that also account for supersaturation changes as the hydrometeors grow.

Book A Coordinated Effort to Improve Parameterization of High Latitude Cloud and Radiation Processes

Download or read book A Coordinated Effort to Improve Parameterization of High Latitude Cloud and Radiation Processes written by and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this project is the development and evaluation of improved parameterization of arctic cloud and radiation processes and implementation of the parameterizations into a climate model. Our research focuses specifically on the following issues: (1) continued development and evaluation of cloud microphysical parameterizations, focusing on issues of particular relevance for mixed phase clouds; and (2) evaluation of the mesoscale simulation of arctic cloud system life cycles.

Book Thermodynamics  Kinetics and Microphysics of Clouds

Download or read book Thermodynamics Kinetics and Microphysics of Clouds written by Vitaly I. Khvorostyanov and published by Cambridge University Press. This book was released on 2014-08-25 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book advances understanding of cloud microphysics and provides a unified theoretical foundation for modeling cloud processes, for researchers and advanced students.

Book Final Technical Report for  Ice Nuclei Relation to Aerosol Properties

Download or read book Final Technical Report for Ice Nuclei Relation to Aerosol Properties written by and published by . This book was released on 2012 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clouds play an important role in weather and climate. In addition to their key role in the hydrologic cycle, clouds scatter incoming solar radiation and trap infrared radiation from the surface and lower atmosphere. Despite their importance, feedbacks involving clouds remain as one of the largest sources of uncertainty in climate models. To better simulate cloud processes requires better characterization of cloud microphysical processes, which can affect the spatial extent, optical depth and lifetime of clouds. To this end, we developed a new parameterization to be used in numerical models that describes the variation of ice nuclei (IN) number concentrations active to form ice crystals in mixed-phase (water droplets and ice crystals co-existing) cloud conditions as these depend on existing aerosol properties and temperature. The parameterization is based on data collected using the Colorado State University continuous flow diffusion chamber in aircraft and ground-based campaigns over a 14-year period, including data from the DOE-supported Mixed-Phase Arctic Cloud Experiment. The resulting relationship is shown to more accurately represent the variability of ice nuclei distributions in the atmosphere compared to currently used parameterizations based on temperature alone. When implemented in one global climate model, the new parameterization predicted more realistic annually averaged cloud water and ice distributions, and cloud radiative properties, especially for sensitive higher latitude mixed-phase cloud regions. As a test of the new global IN scheme, it was compared to independent data collected during the 2008 DOE-sponsored Indirect and Semi-Direct Aerosol Campaign (ISDAC). Good agreement with this new data set suggests the broad applicability of the new scheme for describing general (non-chemically specific) aerosol influences on IN number concentrations feeding mixed-phase Arctic stratus clouds. Finally, the parameterization was implemented into a regional cloud-resolving model to compare predictions of ice crystal concentrations and other cloud properties to those observed in two intensive case studies of Arctic stratus during ISDAC. Our implementation included development of a prognostic scheme of ice activation using the IN parameterization so that the most realistic treatment of ice nuclei, including their budget (gains and losses), was achieved. Many cloud microphysical properties and cloud persistence were faithfully reproduced, despite a tendency to under-predict (by a few to several times) ice crystal number concentrations and cloud ice mass, in agreement with some other studies. This work serves generally as the basis for improving predictive schemes for cloud ice crystal activation in cloud and climate models, and more specifically as the basis for such a scheme to be used in a Multi-scale Modeling Format (MMF) that utilizes a connected system of cloud-resolving models on a global grid in an effort to better resolve cloud processes and their influence on climate.