EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Aerosol Cloud Interactions from Urban  Regional  to Global Scales

Download or read book Aerosol Cloud Interactions from Urban Regional to Global Scales written by Yuan Wang and published by Springer. This book was released on 2015-05-05 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: The studies in this dissertation aim at advancing our scientific understandings about physical processes involved in the aerosol-cloud-precipitation interaction and quantitatively assessing the impacts of aerosols on the cloud systems with diverse scales over the globe on the basis of the observational data analysis and various modeling studies. As recognized in the Fifth Assessment Report by the Inter-government Panel on Climate Change, the magnitude of radiative forcing by atmospheric aerosols is highly uncertain, representing the largest uncertainty in projections of future climate by anthropogenic activities. By using a newly implemented cloud microphysical scheme in the cloud-resolving model, the thesis assesses aerosol-cloud interaction for distinct weather systems, ranging from individual cumulus to mesoscale convective systems. This thesis also introduces a novel hierarchical modeling approach that solves a long outstanding mismatch between simulations by regional weather models and global climate models in the climate modeling community. More importantly, the thesis provides key scientific solutions to several challenging questions in climate science, including the global impacts of the Asian pollution. As scientists wrestle with the complexities of climate change in response to varied anthropogenic forcing, perhaps no problem is more challenging than the understanding of the impacts of atmospheric aerosols from air pollution on clouds and the global circulation.

Book Aerosol Cloud Climate Interactions

Download or read book Aerosol Cloud Climate Interactions written by Peter V. Hobbs and published by Academic Press. This book was released on 1993-07-22 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerosol and clouds play important roles in determining the earth's climate, in ways that we are only beginning to comprehend. In conjunction with molecular scattering from gases, aerosol and clouds determine in part what fraction of solar radiation reaches the earth's surface, and what fraction of the longwave radiation from the earth escapes to space. This book provides an overview of the latest research on atmospheric aerosol and clouds and their effects on global climate. Subjects reviewed include the direct and indirect effects of aerosol on climate, the radiative properties of clouds and their effects on the Earth's radiation balance, the incorporation of cloud effects in numerical weather prediction models, and stratospheric aerosol and clouds.

Book Aerosol Cloud Interactions in Turbulent Clouds

Download or read book Aerosol Cloud Interactions in Turbulent Clouds written by and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract : The influence of aerosol concentration on the cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. In chapter 2, moist Rayleigh-Bénard convection with water saturated boundaries is explored using a one-dimensional-turbulence model. This study provides some background about supersaturation statistics in moist convection. Chapters 3 - 7 discuss the experimental and theoretical investigation of aerosol-cloud interactions and cloud droplet size-distributions in turbulent conditions. The experiments are performed in a way so that steady-state microphysics are achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution is also observed to decrease sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (tctt) for high aerosol concentration, and slow microphysics (tctt)for low aerosol concentration; here, tc is the phase relaxation time and tt is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with the larger variability of supersaturation due to the slow microphysical response. A stochastic theory developed based on the Langevin equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as ts-1 = tc-1 + tt-1, and the measurements are in excellent agreement with this finding. These experiments are discussed in chapters 3 and 4. This effect of varying cloud dropletsize-distributionwidth underscores the importance of droplet size dispersion for aerosol indirect effects. An application of this coupling of aerosol and supersaturation fluctuations during the 'cloud-cleansing' process is discussed in chapter 5. Cloud droplet relative dispersion, defined as the standard deviation over the mean cloud droplet size (d = sigmar / r ), is of central importance in determining and understanding aerosol indirect effects. The analytical expression of d obtained from the stochastic theory is found to depend on the cloud droplet removal time, which in turn increases with the cloud droplet number density. The results show that relative dispersion decreases monotonically with increasing droplet number density, consistent with some recent atmospheric observations. The albedo susceptibility due to turbulence broadening has the same sign as the Twomey effect and augments it by order 10%. These results, along with the test of a commonly-used effective radius parameterization, are presented in chapter 6.), is of central importance in determining and understanding aerosol indirect effects. The analytical expression of d obtained from the stochastic theory is found to depend on the cloud droplet removal time, which in turn increases with the cloud droplet number density. The results show that relative dispersion decreases monotonically with increasing droplet number density, consistent with some recent atmospheric observations. The albedo susceptibility due to turbulence broadening has the same sign as the Twomey effect and augments it by order 10%. These results, along with the test of a commonly-used effective radius parameterization, are presented in chapter 6. In chapter 7, theoretical expressions for cloud droplet size-distribution shape are evaluated using measurements from controlled experiments in the Pi-Chamber. Three theoretical distributions obtained from a Langevin drift-diffusion approach to stochastic condensation are tested. Statistical techniques of ꭕ2 test, sum of squared errors of prediction, and residual analysis are employed to judge relative success or failure of the theoretical distributions to describe the experimental data. In relative comparison, the most favorable comparison to the measurements is the expression for stochastic condensation with size-dependent droplet removal rate.

Book Opportunities to Improve Representation of Clouds and Aerosols in Climate Models with Classified Observing Systems

Download or read book Opportunities to Improve Representation of Clouds and Aerosols in Climate Models with Classified Observing Systems written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2016-08-31 with total page 53 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most significant and uncertain aspects of climate change projections is the impact of aerosols on the climate system. Aerosols influence the climate indirectly by interacting with nearby clouds leading to small changes in cloud cover, thickness, and altitude, which significantly affect Earth's radiative balance. Advancements have been made in recent years on understanding the complex processes and atmospheric interactions involved when aerosols interact with surrounding clouds, but further progress has been hindered by limited observations. The National Academies of Sciences, Engineering, and Medicine organized a workshop to discuss the usefulness of the classified observing systems in advancing understanding of cloud and aerosol interactions. Because these systems were not developed with weather and climate modeling as a primary mission objective, many participants said it is necessary for scientists to find creative ways to utilize the data. The data from these systems have the potential to be useful in advancing understanding of cloud and aerosol interactions. This publication summarizes the presentations and discussions from the workshop.

Book Physics and Chemistry of Clouds

Download or read book Physics and Chemistry of Clouds written by Dennis Lamb and published by Cambridge University Press. This book was released on 2011-04-28 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clouds affect our daily weather and play key roles in the global climate. Through their ability to precipitate, clouds provide virtually all of the fresh water on Earth and are a crucial link in the hydrologic cycle. With ever-increasing importance being placed on quantifiable predictions - from forecasting the local weather to anticipating climate change - we must understand how clouds operate in the real atmosphere, where interactions with natural and anthropogenic pollutants are common. This textbook provides students - whether seasoned or new to the atmospheric sciences - with a quantitative yet approachable path to learning the inner workings of clouds. Developed over many years of the authors' teaching at Pennsylvania State University, Physics and Chemistry of Clouds is an invaluable textbook for advanced students in atmospheric science, meteorology, environmental sciences/engineering and atmospheric chemistry. It is also a very useful reference text for researchers and professionals.

Book Clouds and Their Climatic Impact

Download or read book Clouds and Their Climatic Impact written by Sylvia Sullivan and published by John Wiley & Sons. This book was released on 2023-12-19 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clouds and Their Climatic Impacts Clouds are an influential and complex element of Earth’s climate system. They evolve rapidly in time and exist over small spatial scales, but also affect global radiative balance and large-scale circulations. With more powerful models and extensive observations now at our disposal, the climate impact of clouds is receiving ever more research attention. Clouds and Their Climatic Impacts: Radiation, Circulation, and Precipitation presents an overview of our current understanding on various types of clouds and cloud systems and their multifaceted role in the radiative budget, circulation patterns, and rainfall. Volume highlights include: Interactions of aerosol with both liquid and ice clouds Surface and atmospheric cloud radiative feedbacks and effects Arctic, extratropical, and tropical clouds Cloud-circulation coupling at global, meso, and micro scales Precipitation efficiency, phase, and measurements The role of machine learning in understanding clouds and climate The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Book Mixed Phase Clouds

    Book Details:
  • Author : Constantin Andronache
  • Publisher : Elsevier
  • Release : 2017-09-28
  • ISBN : 012810550X
  • Pages : 302 pages

Download or read book Mixed Phase Clouds written by Constantin Andronache and published by Elsevier. This book was released on 2017-09-28 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixed-Phase Clouds: Observations and Modeling presents advanced research topics on mixed-phase clouds. As the societal impacts of extreme weather and its forecasting grow, there is a continuous need to refine atmospheric observations, techniques and numerical models. Understanding the role of clouds in the atmosphere is increasingly vital for current applications, such as prediction and prevention of aircraft icing, weather modification, and the assessment of the effects of cloud phase partition in climate models. This book provides the essential information needed to address these problems with a focus on current observations, simulations and applications. - Provides in-depth knowledge and simulation of mixed-phase clouds over many regions of Earth, explaining their role in weather and climate - Features current research examples and case studies, including those on advanced research methods from authors with experience in both academia and the industry - Discusses the latest advances in this subject area, providing the reader with access to best practices for remote sensing and numerical modeling

Book Investigating Aerosol cloud Interactions

Download or read book Investigating Aerosol cloud Interactions written by Benjamin Stephen Grandey and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Microphysical and dynamical interactions between aerosols and clouds are associated with some of the largest uncertainties in projections of future climate. Many possible aerosol effects on clouds have been suggested, but large uncertainties remain. In order to improve model projections of fu- ture climate, it is essential that we improve our quantitative understanding of anthropogenic aerosol effects. Several studies investigating interactions between satellite-observed aerosol and cloud prop- erties have been published in recent years. However, the observed relationships are not necessarily due to aerosol effects on clouds. They may be due to cloud and precipitation effects on aerosol, me- teorological covariation, observational data errors or methodological errors. An analysis of method- ological errors arising through climatological spatial gradients is performed. For region sizes larger than 40 x 40, commonly used in the literature, spurious spatial variations in retrieved cloud and aerosol properties are found to introduce widespread significant errors to calculations of aerosol- cloud relationships. Small scale analysis prior to error-weighted aggregation to larger region sizes is recommended. Appropriate ways of quantifying relationships between aerosol optical depth (T) and cloud properties are considered, and results are presented for three satellite datasets. There is much disagreement in observed relationships between T and liquid cloud droplet number concentration and between T and liquid cloud droplet effective radius, particularly over land. However, all three satellite datasets are in agreement about strong positive relationships between T and cloud top height and between T and cloud fraction (fc). Using reanalysis T data, which are less affected by retrieval artifacts, it is suggested that a large part of the observed Ie-r signal may fc-T be due to cloud contamination of T. General circulation model simulations further demonstrate that positive fc-T relationships may primarily arise due to covariation with relative humidity, and that negative fc-T relationships may arise due to scavenging of aerosol by precipitation. A new method of investigating the contribu- tion of meteorological covariation to the observed relationships is introduced. Extratropical cyclone storm-centric composites of retrieved aerosol and cloud properties are investigated. A storm-centric description of the synoptics is found to be capable of explaining spurious fc-T relationships, although the spurious relationships explained are considerably smaller than observed relationships.

Book Investigations of Cloud Altering Effects of Atmospheric Aerosols Using a New Mixed Eulerian Lagrangian Aerosol Model

Download or read book Investigations of Cloud Altering Effects of Atmospheric Aerosols Using a New Mixed Eulerian Lagrangian Aerosol Model written by Henry Donnan Steele and published by . This book was released on 2004 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Industry, urban development, and other anthropogenic influences have substantially altered the composition and size-distribution of atmospheric aerosol particles over the last century. This, in turn, has altered cloud albedo, lifetime, and patterns which together are thought to exert a negative radiative forcing on the climate; these are the indirect effects of atmospheric aerosols. The specifics of the process by which aerosol particles seed cloud particles are complex and highly uncertain. The goal of this thesis is to refine understanding of the role of various aerosol types in determining cloud properties. We approach this goal by constructing a new highly detailed aerosol-cloud process model that is designed to simulate condensation upon complex aerosol populations. We use this model to investigate the microphysics of aerosol-cloud interactions, specifically considering the role of cloud dynamics and of the ubiquitous mixed soot / sulfate aerosols. We describe the Mixed Eulerian-Lagrangian Aerosol Model (MELAM). This new computer model of aerosol microphysics is specifically tailored to simulate condensation and activation as accurately as possible. It specifically calculates aerosol thermodynamics, condensation, coagulation, gas and aqueous phase chemistry, and dissolution. The model is able to consider inorganic aerosols and aerosols with both inorganics and insoluble cores; the specific chemical system to be considered is specified by the user in text input files. Aerosol particles may be represented using "sectional distributions" or using a "representative sample" distribution which tracks individual particles. We also develop a constant updraft speed, adiabatic parcel model and a variable updraft speed, episodically entraining parcel model to provide boundary conditions to MELAM and allow simulations of aerosol activation in cloud updrafts. Using MELAM and the parcel models, we demonstrate that aerosol activation depends on the composition and size distribution of the sub-cloud aerosol population, on the updraft speed through a parcel's lifting condensation level, on the vertical profile of the updraft speed, and on entrainment. We use a convective parameterization that was developed for use in global or regional models to drive the episodically entraining, variable updraft speed parcel model. Ultimately, reducing the uncertainty of the global impact of the indirect effects of aerosols will depend on successfully linking cloud parameterizations to models of aerosol activation; our work represents a step in that direction. We also consider the activation of mixed soot / sulfate particles in cloud updrafts. We constrain for the first time a model of condensation onto these mixed particles that incorporates the contact angle of the soot / solution interface and the size of the soot core. We find that as soot ages and its contact angle with water decreases, mixed soot / sulfate aerosols activate more readily than the equivalent sulfate aerosols that do not have soot inclusions. We use data from the Aerosol Characterization Experiments (ACE) 1 and 2, and from the Indian Ocean Experiment (INDOEX) to define representative aerosol distributions for clean, polluted, and very polluted marine environments. Using these distributions, we argue that the trace levels of soot observed in clean marine environments do not substantially impact aerosol activation, while the presence of soot significantly increases the number of aerosol that activate in polluted areas.

Book On the Representation of Sub grid Scale Phenomena and Its Impact on Clouds Properties and Climate

Download or read book On the Representation of Sub grid Scale Phenomena and Its Impact on Clouds Properties and Climate written by Ricardo Morales Betancourt and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis addresses a series of questions related to the problem of achieving reliable and physically consistent representations of aerosol-cloud interaction in global circulation models (GCM). In-situ data and modeling tools are used to develop and evaluate novel parameterization schemes for the process of aerosol activation for applications in GCM simulations. Atmospheric models of different complexity were utilized, ranging from detailed Lagrangian parcel model simulations of the condensational growth of droplets, to one-dimensional single column model with aerosol and cloud microphysics, and finally GCM simulations performed with the Community Atmosphere Model (CAM). A scheme for mapping the sub-grid scale variability of cloud droplet number concentrations (CDNC) to a number of microphysical process rates in a GCM was tested, finding that neglecting this impact can have substantial influences in the integrated cloud properties. A comprehensive comparison and evaluation of two widely used, physically-based activation parameterizations was performed in the framework of CAM5.1. This was achieved by utilizing a numerical adjoint sensitivity approach to comprehensively investigate their response under the wide range of aerosol and dynamical conditions encountered in GCM simulations. As a result of this, the specific variables responsible for the observed differences in the physical response across parameterizations are encountered, leading to further parameterization improvement.

Book Physical Processes in Clouds and Cloud Modeling

Download or read book Physical Processes in Clouds and Cloud Modeling written by Alexander P. Khain and published by Cambridge University Press. This book was released on 2018-04-30 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the most comprehensive and systematic description currently available of both classical and novel theories of cloud processes, providing a much-needed link between cloud theory, observation, experimental results, and cloud modeling. This volume shows why and how modern models serve as a major tool of investigation of cloud processes responsible for atmospheric phenomena, including climate change. It systematically describes classical as well as recent advancements in cloud physics, including cloud-aerosol interaction; collisions of particles in turbulent clouds; and the formation of multiphase cloud particles. As the first of its kind to serve as a practical guide for using state-of-the-art numerical cloud models, major emphasis is placed on explaining how microphysical processes are treated in modern numerical cloud resolving models. The book will be a valuable resource for advanced students, researchers and numerical model designers in cloud physics, atmospheric science, meteorology, and environmental science.

Book Analysis of the Aerosol radiation cloud Interactions Through the Use of Regional Climate chemistry Coupled Models

Download or read book Analysis of the Aerosol radiation cloud Interactions Through the Use of Regional Climate chemistry Coupled Models written by Rocío Baró Esteban and published by . This book was released on 2018 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: The response of the climate systems to aerosols and their effect on the radiative budget of the Earth is the most uncertain climate feedback and one of the key topics in climate change mitigation. Air quality-climate studies (AQCI) are a key, but uncertain contributor to the anthropogenic forcing that remains poorly understood. To build confidence in the AQCI studies, regional-scale integrated meteorology-atmospheric chemistry models are in demand. The main objective of the present Thesis is the characterization of the uncertainties in the climate-chemistry-aerosol-cloud-radiation system associated to the aerosol direct and indirect radiative effects caused by aerosols over Europe, employing an ensemble of fully-coupled climate and chemistry model simulations. The first topic covered deals with the microphysics parameterization configuration of an online-coupled model. The differences when using two microphysics schemes within the Weather Research and Forecasting coupled with Chemistry (WRF-Chem) model are analyzed. The evaluated simulations come from the Air quality Model Evaluation International Initiative (AQMEII) Phase 2. The impact on several variables is estimated when selecting Morrison vs. Lin microphysics. The results showed smaller and more numerous cloud droplets simulated with the Morrison and therefore this scheme is more effective in scattering shortwave radiation. Also, the impact of biomass burning (BB) aerosols on surface winds during the Russian heat wave and wildfires episode is studied. The methodology consists of three WRF-Chem simulations over Europe, run under the context of EuMetChem COST Action ES1004, differing in the inclusion (or not) of aerosol-radiation (ARI) and aerosol-cloud interactions (ACI). These aerosols can affect surface winds where emission sources are located and further from the release areas. Local winds decrease due to a reduction of shortwave radiation at the ground, which leads to decreases in 2-m temperature. Atmospheric stability increases when considering aerosol feedbacks, inducing a lower planetary boundary layer height. This Dissertation also investigates the ability of an ensemble of simulations to elucidate the aerosol-radiation-cloud interactions. An assessment of whether the inclusion of atmospheric aerosol radiative feedbacks during two aerosol case studies of an ensemble of on-line coupled models improves the simulation results for maximum, mean and minimum 2-m temperature is done. The simulations (COST Action ES1004) are evaluated against observational data from E-OBS database. In both episodes, a general underestimation of the studied variables is found, being most noticeable in maximum temperature. The biases are improved when including ARI or ARI+ACI in the dust case. Although the ensemble does not outperform the individual models (in general), its improvements when including ARI+ARI are more remarkable. Last, an improvement of the spatio-temporal variability and correlation coefficients when aerosol radiative effects are included is found. Finally, the representation of the ACI in regional-scale integrated models when simulating the climate-chemistry-cloud-radiation system is analyzed. It complements the temperature analyses. The evaluated simulations are run in the context of AQMEII Phase 2 and include the ARI+ACI interactions. Simulations are evaluated against the (ESA) Cloud_cci data. Results show an underestimation(overestimation) of cloud fraction (CFR) over land(ocean) areas, which could be related to satellite retrieval missing thin clouds. Lower bias and mean absolute error (MAE) are found in the ensemble Cloud optical depth (COD) and cloud liquid ice path (CIP) are generally underestimated. The differences are related to microphysics. The development of this Thesis has contributed to the state of the art in AQCI studies. Although including aerosol feedbacks does not modify the bias, the spatio-temporal variability and correlation coefficients are improved.

Book A Synthesis of Observations of Aerosol cloud Interactions Over the Pristine  Biologically Active Southern Ocean and the Implications for Global Climate Model Predictions

Download or read book A Synthesis of Observations of Aerosol cloud Interactions Over the Pristine Biologically Active Southern Ocean and the Implications for Global Climate Model Predictions written by Isabel Louise McCoy and published by . This book was released on 2020 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: The change in planetary albedo due to aerosol-cloud interactions (aci) during the industrial era is the leading source of uncertainty in inferring Earth's climate sensitivity to increased greenhouse gases from the historical record. Examining pristine environments such as the Southern Ocean (SO) helps us to understand the pre-industrial (PI) state and constrain radiative forcing associated with aci (RFaci). Cloud droplet number concentration (Nd) is a key aci indicator variable. Using global climate models (GCMs), this study finds that the hemispheric contrast in Nd of liquid clouds between the pristine SO and the polluted Northern Hemisphere observed in the present-day (PD) can be used as a proxy for the increase in Nd from the PI. The hemispheric difference constraint and MODIS satellite observations suggest that PI Nd may have been higher than previously thought and provide an estimate of RFaci between -1.2 and -0.6 Wm-2. Southern Ocean liquid clouds can reach Nd levels comparable to the polluted outflows of East Asia and the United States despite persistent precipitation depletion associated with mid-latitude storm systems. This high Nd in one of the most pristine regions on Earth motivates further investigation of the mechanisms driving Nd in the real world and better inclusion of the mechanisms in models. In this study, aerosol and cloud microphysical data from the 2018 Southern Ocean Cloud Radiation Aerosol Transport Experimental Study (SOCRATES) aircraft campaign are used to identify a novel and potentially important mechanism missing or poorly represented in models: production of new particles through synoptic uplift. The small, Aitken mode particles produced in this process dominate the free tropospheric atmosphere in the summertime SO. We find it is likely that entrainment of free tropospheric Aitken aerosols is a leading contributor to sub-cloud cloud condensation nuclei and thus may be a key control on Nd. The free tropospheric Aitken reservoir may maintain the persistently high Nd observed across the SO against precipitation depletion. Finally, our observational comparisons with nudged Community Atmosphere Model (CAM6) hindcasts highlight large aerosol number and composition discrepancies that may significantly and negatively impact the ability of current climate models to capture aci in pristine, PI environments.

Book Aerosol cloud precipitation Interaction in Ultraclean Layers and Optically Thin Veil Cloud System in the Stratocumulus to Cumulus Transition

Download or read book Aerosol cloud precipitation Interaction in Ultraclean Layers and Optically Thin Veil Cloud System in the Stratocumulus to Cumulus Transition written by Kuan-Ting O and published by . This book was released on 2019 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent observational studies have shown that ultraclean layers (UCLs) and optically thin veil clouds associated with precipitating deep cumulus are common features of the marine boundary layer in the stratocumulus to cumulus transition. The very low number concentration of cloud droplet and cloud condensation nuclei in UCLs, strong precipitation in the associated cumulus, together with the low optical thickness of optically thin veil clouds, make such a system particularly appealing for the study of aerosol-cloud-precipitation interactions. More importantly, low cloud radiative properties biases (i.e., too few, too bright low cloud bias) in the current generation of global climate models (GCMs) seems strongly associated with the uncertainty in representing optically thin veil clouds, and these clouds may serve as an important constraint on the too few, too bright problem. However, systematic investigation of (1) global contribution and seasonal variability of optically thin veil clouds and (2) aerosol-cloud-precipitation interactions in UCLs and optically thin veil clouds is still lacking. We aim to investigate these problems with aircraft remote sensing, satellite measurements and a cloud resolving model. The dissertation is organized into the following three sections: • Using high resolution aircraft remote sensing measurement to characterize optically thin veil clouds in the stratocumulus to cumulus transition (SCT): Aircraft remote sensing measurements (i.e., lidar and radar) taken abroad NSF/NCAR GV-HIAPER research flights flown during the Cloud System Evolution in the Trades field campaign (CSET) sampled marine air masses between Sacramento, California (38.68N, 121.58W), and Kona (19.68N, 156.08W) are used in our study. Optically thin veil clouds, defined as the subset of low clouds with cloud bases > 1 km that do not fully attenuate high-spectral-resolution lidar signal (HSRL) (i.e., indicating optical depths 3), comprise considerable cover of low clouds (~ 40 %) over the SCT. It is found that optically thin veil clouds are also geometrically thin with cloud thickness ~ 200 m, and commonly reside in the upper boundary layer with average cloud base 1.5 km. • Investigating deeper, precipitating PBLs associated with optically thin veil clouds in the Sc-Cu Transition using spaceborne satellite measurements: Variability and vertical structure of optically thin veil clouds over SCT regions around the globe are investigated using both passive and active satellite observations. These observations reveal pronounced relationships between optically thin veil clouds, strong precipitation, deep planetary boundary layer (PBL) height and low cloud droplet number concentration (CDNC). The results are in agreement with the hypothesis that the low optical thickness of veil clouds over the SCT is contingent on the low CDNC caused by strong precipitation scavenging occurring in active cumuli, a process whose efficiency is strongly dependent on maximum condensate amount in updrafts and thus is highly constrained by PBL height. • Exploring aerosol-cloud-precipitation processes in UCLs and optically thin veil clouds system using a cloud resolving model: Characteristics of UCLs and optically thin veil clouds are investigated in the cloud resolving model (CRM). The domain mean cloud and aerosol properties in UCLs and optically thin veil clouds from CRM simulations agree with recent observational studies in general. The simulation results show that the detrainment from active precipitating cumulus produces the stratiform veil clouds, which are strongly depleted in particle concentration due to very efficient coalescence-scavenging process in ascending parcels passing through cumulus towers. The simulation shows a median CDNC in thin veil clouds of 5.8 cm−3, implying that majority of thin veil clouds are UCLs as well and confirming the strong connection between veil clouds and UCLs. In addition, there is a strong correlation between surface precipitation and the fraction of low clouds that are UCLs, and such correlation implies the importance of precipitation scavenging for the formation of UCLs. A cloud resolving model coupled with a prognostic aerosol scheme is used in our study, enabling characterization of the spatiotemporal variability of aerosol in the boundary layer. The results show that depletion of aerosol concentration starts first in the upper boundary layer that is associated with in-cloud coalescence scavenging process. The evaporation of veil clouds leaves very low CCN number concentration (Na

Book Aerosol cloud radiation Interaction Studies with GEOS 4 Model and Comparison with Observations

Download or read book Aerosol cloud radiation Interaction Studies with GEOS 4 Model and Comparison with Observations written by Partha Sarathi Bhattacharjee and published by . This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasing human population and rapid urbanization in the last two decades have caused a sharp rise in anthropogenic aerosols particularly over South and East Asia. Numerous studies have shown that aerosols play an important role in climate change through their interaction with the global water and energy cycles. Thus Aerosol-cloud-radiation-monsoon interaction related droughts and floods are two of the most serious environmental hazards confronting more than 60% of the population of the world living in the Asian monsoon countries. General circulation models (GCMs) are an important tool for understanding the climate response to changes in the amounts and composition of aerosols due to evolving use of fossil and biomass fuels. This dissertation attempt to get an insight into the aerosol-cloud interaction and study impacts of aerosol forcing, with particular emphasis on the interaction of aerosol with monsoon water cycle. NASA Goddard Earth Observing System (GEOS) version 4 General Circulation Model (called GEOS4-GCM) with moist convection of Relaxed Arakawa-Schubert Scheme (McRAS) clouds and state-of-the-art parameterization of cloud microphysical process is used this study. A Single Column version (SCM) of the model is used to evaluate various parameterization schemes by comparing against in-situ and satellite observations. The model simulated realistic annual mean and annual cycles of cloud water, cloud optical thickness, cloud drop number concentration and effective radius without showing any systematic biases. GCM version of the model is used to study aerosol induced anomalies during summer months (June-August) particularly focusing over Indian monsoon. The individual aerosol effects (direct and indirect) and their combination show different impacts on radiation as well as on cloud microphysics, precipitation and circulation. However, complexities of nucleation of ice clouds in the model result not enough aerosols were acting as ice nuclei, which led to incomplete understanding of indirect effect in the atmosphere.

Book Representing Droplet Size Distribution and Cloud Processes in Aerosol cloud climate Interaction Studies

Download or read book Representing Droplet Size Distribution and Cloud Processes in Aerosol cloud climate Interaction Studies written by Wei-Chun Hsieh and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The indirect effect of aerosols expresses how changes in aerosols would influence clouds and cause impacts on Earth's climate and hydrological cycle. The current assessment of the interactions between aerosols and clouds is uncertain and parameterizations used to represent cloud processes are not well constrained. This thesis first evaluates a cloud activation parameterization by investigating cloud droplet number concentration closure for stratocumulus clouds sampled during the 2005 MArine Stratus Experiment (MASE). Further analysis of the droplet size distribution characteristics using the extended parameterization is performed by comparing the predicted droplet spectra with the observed ones. The effect of dynamical variability on the droplet size distribution evolution is also investigated by considering a probability density function for updraft velocity. The cumulus and stratocumulus cloud datasets from in-situ field measurements of NASA's Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) and Coastal STRatocumulus Imposed Perturbation Experiment (CSTRIPE) campaigns are used for this task. Using the same datasets, the autoconversion rate is calculated based on direct integration of kinematic collection equation (KCE). Six autoconversion parameterizations are evaluated and the effect of turbulence on magnifying collection process is also considered. Finally, a general circulation model (GCM) is used for studying the effect of different autoconversion parameterizations on indirect forcing estimates. The autoconversion rate given by direct KCE integration is also included by implementing a look-up table for collection kernels. Although these studies add more variability to the current estimate of aerosol indirect forcing, they also provide direction towards a more accurate assessment for climate prediction.