EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Investigating the Geochemical Alterations in an Aquifer Due to Long term Sequestration of CO2 Using Time lapse Seismic Information

Download or read book Investigating the Geochemical Alterations in an Aquifer Due to Long term Sequestration of CO2 Using Time lapse Seismic Information written by Sang Hyon Han and published by . This book was released on 2015 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: The effects of chemical interaction between injected CO2, brine, and formation rocks are often ignored in sequestration studies because chemical reactions are assumed to be localized to carbonate rocks that make up only a small proportion of the potential reservoirs. It is conjectured in this work that long-term exposure of certain types of clays and cement material to CO2-brine mixtures can induce chemical reactions and subsequent alteration of rock properties that can be subsequently detected in time-lapse seismic surveys. This is demonstrated using a case-study structured after the Cranfield field injection site. Geochemical alterations of the reservoir rock are quantified by performing reactive transport simulations and subsequently using rock physics models to translate the altered petrophysical properties into seismic responses. The study quantifies the long-term geochemical effects of CO2 injection on the seismic response and conversely, presents an approach to invert the reservoir regions contacted by the CO2-saturated brine based on the observed seismic response. Time lapse or passive seismic monitoring is an effective method for mapping the progress of the CO2 plume through the subsurface. But, because of the lack of resolution of the seismic information, it is necessary to use the seismic information together with prior geologic knowledge about the surface in order to identify if there is any migration of CO2 into regions that might be deemed sensitive e.g. overlying aquifers or faults. Because of uncertainties in the prior geologic description of the reservoir, the feasibility of implementing a model selection process is explored in this work. The model selection procedure utilizes the observed well data and reference seismic map to select a subset of models. The flow simulation of CO2 injection and forward seismic modeling were repeated for the newly generated reservoir models, and the seismic responses were compared for the reaction and non-reaction cases. The study showed that the effects of geochemical reactions on petrophysical properties and resultant spatial distribution of fluid saturation were visible in the seismic response. Major differences in seismic responses were detected in regions of the reservoir where significant amount of minerals were dissolved and precipitated. These regions were at the top of the reservoir due to the reactions caused by the buoyant CO2 plume. The presence of carbonate facies, even in small proportion, plays an important role in geochemical reactions and their effect is manifested at the seismic scale. The unique model selection methodology presented in this thesis is efficient at detecting the important features in the seismic and injection response that is induced by the geochemical alterations occurring in the reservoir. The results of this time-lapse study can provide new interpretation of events observed in time-lapse seismic data that might lead to a better assessment of leakage pathways and other risks.

Book Geological Sequestration of Carbon Dioxide

Download or read book Geological Sequestration of Carbon Dioxide written by Luigi Marini and published by Elsevier. This book was released on 2006-10-12 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contents of this monograph are two-scope. First, it intends to provide a synthetic but complete account of the thermodynamic and kinetic foundations on which the reaction path modeling of geological CO2 sequestration is based. In particular, a great effort is devoted to review the thermodynamic properties of CO2 and of the CO2-H2O system and the interactions in the aqueous solution, the thermodynamic stability of solid product phases (by means of several stability plots and activity plots), the volumes of carbonation reactions, and especially the kinetics of dissolution/precipitation reactions of silicates, oxides, hydroxides, and carbonates. Second, it intends to show the reader how reaction path modeling of geological CO2 sequestration is carried out. To this purpose the well-known high-quality EQ3/6 software package is used. Setting up of computer simulations and obtained results are described in detail and used EQ3/6 input files are given to guide the reader step-by-step from the beginning to the end of these exercises. Finally, some examples of reaction-path- and reaction-transport-modeling taken from the available literature are presented. The results of these simulations are of fundamental importance to evaluate the amounts of potentially sequestered CO2, and their evolution with time, as well as the time changes of all the other relevant geochemical parameters (e.g., amounts of solid reactants and products, composition of the aqueous phase, pH, redox potential, effects on aquifer porosity). In other words, in this way we are able to predict what occurs when CO2 is injected into a deep aquifer.* Provides applications for investigating and predicting geological carbon dioxide sequestration* Reviews the geochemical literature in the field* Discusses the importance of geochemists in the multidisciplinary study of geological carbon dioxide sequestration

Book A Geochemical Investigation of CO2 Sequestration and Site Characterization at Two Missouri Locations

Download or read book A Geochemical Investigation of CO2 Sequestration and Site Characterization at Two Missouri Locations written by Robert Allen Swain and published by . This book was released on 2015 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The feasibility of sequestering CO2 in saline aquifers of Lamotte Formation sandstone was investigated at wells located near Thomas Hill power plant, Moberly, MO and Sioux City Power Plant in Florissant, MO. Governing factors of using aquifers for CO2 disposal include water salinity, potential for carbonic acid buffering, rate of precipitation of carbonate minerals following CO2 introduction into the host aquifer, and the integrity of the Davis and Derby-DoeRun shale as a trap rock to prevent migration of the CO2 phase and carbonic acid into the overlying potable Ozark Aquifer. Both in situ and laboratory methods were used to determine formation water composition and reactivity of rock samples under accelerated H2O + CO2 experiment conditions. Major element cations and anions were determined for the aquifer water as well as ions released from altered rock samples. X-Ray Diffraction (XRD) determined clay phases present in reservoir and trap rocks, and Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) was used to examine rock samples before and after CO2 reactions. Salinity of each target aquifer had total dissolved solid (TDS) concentrations over 40,000 mg/kg, above the EPA limit of 10,000 mg/kg to qualify as a class VI injection site. Upon exposure to CO2 + H2O in a high pressure and temperature environment, some samples displayed visible iron alteration and precipitation of spherical carbonate phases of undetermined identity. Davis samples showed variable reactivity with carbonic acid, buffering from a baseline pH of 3.90 up to pH 6.88. The slowest buffer was to pH 6.04 over 205 days, and had average Ca and Mg releases of 418 and 135 ppm, respectively. Further research is needed to test the integrity of the Davis Formation as a viable seal"--Abstract, page iii.

Book Advances in the Geological Storage of Carbon Dioxide

Download or read book Advances in the Geological Storage of Carbon Dioxide written by S. Lombardi and published by Springer Science & Business Media. This book was released on 2006-01-13 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: As is now generally accepted mankind’s burning of fossil fuels has resulted in the mass transfer of greenhouse gases to the atmosphere, a modification of the delicately-balanced global carbon cycle, and a measurable change in world-wide temperatures and climate. Although not the most powerful greenhouse gas, carbon dioxide (CO) drives climate 2 change due to the enormous volumes of this gas pumped into the atmosphere every day. Produced in almost equal parts by the transportation, industrial and energy-generating sectors, atmospheric CO concentrations have 2 increased by about 50% over the last 300 years, and according to some sources are predicted to increase by up to 200% over pre-industrial levels during the next 100 years. If we are to reverse this trend, in order to prevent significant environmental change in the future, action must be taken immediately. While reduced use of fossil fuels (through conservation, increased efficiency and expanded use of renewable energy sources) must be our ultimate goal, short to medium term solutions are needed which can make an impact today. Various types of CO storage techniques have been proposed to fill this 2 need, with the injection of this gas into deep geological reservoirs being one of the most promising. For example this approach has the potential to become a closed loop system, whereby underground energy resources are brought to surface, their energy extracted (via burning or hydrogen extraction), and the resulting by-products returned to the subsurface.

Book Time lapse Seismic Monitoring of CO2 Storage in Saline Aquifers

Download or read book Time lapse Seismic Monitoring of CO2 Storage in Saline Aquifers written by Grace Cairns and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geologic Carbon Sequestration

Download or read book Geologic Carbon Sequestration written by V. Vishal and published by Springer. This book was released on 2016-05-11 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.

Book Geological Carbon Storage

    Book Details:
  • Author : Stéphanie Vialle
  • Publisher : John Wiley & Sons
  • Release : 2018-11-15
  • ISBN : 1119118670
  • Pages : 372 pages

Download or read book Geological Carbon Storage written by Stéphanie Vialle and published by John Wiley & Sons. This book was released on 2018-11-15 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geological Carbon Storage Subsurface Seals and Caprock Integrity Seals and caprocks are an essential component of subsurface hydrogeological systems, guiding the movement and entrapment of hydrocarbon and other fluids. Geological Carbon Storage: Subsurface Seals and Caprock Integrity offers a survey of the wealth of recent scientific work on caprock integrity with a focus on the geological controls of permanent and safe carbon dioxide storage, and the commercial deployment of geological carbon storage. Volume highlights include: Low-permeability rock characterization from the pore scale to the core scale Flow and transport properties of low-permeability rocks Fundamentals of fracture generation, self-healing, and permeability Coupled geochemical, transport and geomechanical processes in caprock Analysis of caprock behavior from natural analogues Geochemical and geophysical monitoring techniques of caprock failure and integrity Potential environmental impacts of carbon dioxide migration on groundwater resources Carbon dioxide leakage mitigation and remediation techniques Geological Carbon Storage: Subsurface Seals and Caprock Integrity is an invaluable resource for geoscientists from academic and research institutions with interests in energy and environment-related problems, as well as professionals in the field.

Book Geochemical Modeling of CO2 Sequestration in Dolomitic Limestone Aquifers

Download or read book Geochemical Modeling of CO2 Sequestration in Dolomitic Limestone Aquifers written by Mark W. Thomas and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: ABSTRACT: Geologic sequestration of carbon dioxide (CO2) in a deep, saline aquifer is being proposed for a power-generating facility in Florida as a method to mitigate contribution to global climate change from greenhouse gas (GHG) emissions. The proposed repository is a brine-saturated, dolomitic-limestone aquifer with anhydrite inclusions contained within the Cedar Keys/Lawson formations of Central Florida. Thermodynamic modeling is used to investigate the geochemical equilibrium reactions for the minerals calcite, dolomite, and gypsum with 28 aqueous species for the purpose of determining the sensitivity of mineral precipitation and dissolution to the temperature and pressure of the aquifer and the salinity and initial pH of the brine. The use of different theories for estimating CO2 fugacity, solubility in brine, and chemical activity is demonstrated to have insignificant effects on the predicted results. Nine different combinations of thermodynamic models predict that the geochemical response to CO2 injection is calcite and dolomite dissolution and gypsum precipitation, with good agreement among the quantities estimated. In all cases, CO2 storage through solubility trapping is demonstrated to be a likely process, while storage through mineral trapping is predicted to not occur. Over the range of values examined, it is found that net mineral dissolution and precipitation is relatively sensitive to temperature and salinity, insensitive to CO2 injection pressure and initial pH, and significant changes to porosity will not occur.

Book Site Specific Geochemical Modeling of Groundwater and CO2 Interactions

Download or read book Site Specific Geochemical Modeling of Groundwater and CO2 Interactions written by Elizabeth Johns and published by . This book was released on 2014 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are concerns that anthropogenic emissions of carbon dioxide into the atmosphere are contributing to climate change and ocean acidification. Currently scientists are using geochemical modeling of groundwater, rock and carbon dioxide interactions for geologic carbon sequestration purposes, as possible methods to mitigate the problem. Geologic carbon sequestration is a process of mitigation that has the potential to reduce the impact of carbon dioxide emissions into the atmosphere through the injection of carbon dioxide into a saline aquifer. This study investigated the extent to which carbon dioxide can be sequestered in the Lamotte Formation, a Cambrian aged saline aquifer, due to solubility and mineral trapping, at three well sites. A comparison of the geochemical suitability of the three sites in North-Central Missouri was also conducted. Site specific data such as temperature, carbon dioxide fugacity, pH, mineral content and groundwater composition were the input parameters needed to simulate the sequestration of carbon dioxide in a saline aquifer (Geochemist's Workbench software). The simulation results showed more aqueous CO2 could be sequestered at the Luecke Site for both the injection period (91.4 g/kg) and post-injection period (81.5 g/kg), while more solid phase CO2 could be sequestered at the Thomas Hill Site for the injection period (5.06 g/kg) and the first 500 years of the post-injection period (16.32 g/kg).

Book Time lapse Seismic Modeling for CO2 Sequestration at the Dickman Field  Kansas

Download or read book Time lapse Seismic Modeling for CO2 Sequestration at the Dickman Field Kansas written by Jintan Li and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Time-lapse seismic modeling is often used to study hydrocarbon reservoirs, especially for those undergoing injection or production. The Dickman field, Kansas, provides two possible CO2 sequestration targets: a regional deep saline reservoir (the primary objective) and a shallower mature, depleted oil reservoir (secondary). The work in this dissertation characterizes and simulates monitoring of CO2 movement before, during, and after injection including fluid flow paths, reservoir property changes, CO2 containment, and post-injection stability. My seismic simulation for time-lapse CO2 monitoring was based on flow simulator output over a 50-year injection and 250-year simulation period. This work introduces a feasible and reliable regridding technique that resolves different scales from geological modeling, flow simulation, to seismic modeling for a realistic carbonate geological model. Gassmann fluid substitution theory is applied to calculate fluid properties changes before and after injection. For a porous Mississippian carbonate reservoir with average 25% porosity, the P wave velocity can change around 15% with CO2 saturation up to 84%. Seismic simulation was accomplished via PP and PS reflectivity from the Zoeppritz equation, convolutional (1D), acoustic and elastic (2D) finite difference modeling by a flux-corrected transport equation. This work assesses the effectiveness of 4D seismic monitoring in the evaluation of long-term CO2 containment stability through a fault leakage test. A CO2 plume can be detected from the difference on seismic sections with 5 to 10ms time shift at the storage site before and after injection, and was validated by comparison with the prestack field data. Time-lapse flow to seismic modeling is proved to be useful for carbon dioxide sequestration in a hard rock carbonate reservoir.

Book

    Book Details:
  • Author :
  • Publisher :
  • Release : 1966
  • ISBN :
  • Pages : pages

Download or read book written by and published by . This book was released on 1966 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Investigation of CO2 Seeps at the Crystal Geyser Site Using Numerical Modeling with Geochemistry

Download or read book Investigation of CO2 Seeps at the Crystal Geyser Site Using Numerical Modeling with Geochemistry written by Eric Youngwoong Kim and published by . This book was released on 2012 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon Dioxide (CO2) sequestration requires that the injected CO2 be permanently trapped in the subsurface and not leak from the target location. To accomplish this, it is important to understand the main mechanisms associated with CO2 flow and transport in the subsurface once CO2 is injected. In this work CO2 seeps at the Crystal Geyser site were studied using modeling and simulation to determine how CO2 geochemically reacts with formation brines and how these interactions impact the migration of CO2. Furthermore different scenarios for CO2 migration and seepage along the Grand Wash fault are studied and the possible outcomes for these different scenarios are documented. The GEM (Generalized Equation-of-State Model) from CMG Ltd. was used to perform the simulation studies. A 2-D model was built without geochemical reactions to mainly study the mechanism associated with dissolution of CO2 gas. The process of CO2 release from the brine as the fluid mixture flows up along the fault was modeled. Then, 3-D models with geochemical reactions were built for CO2 migration corresponding to two different sources of CO2 - deep crustal 2 and CO2-dissolved in groundwater. In both these cases, CO2 reacted with the aqueous components and minerals of the formation and caused carbonate mineralization. In the case of deep crustal CO2 source, there were vertical patterns of calcite mineralization simulated along the fault that indicated that calcite mineralization might be localized to isolated vertical flow paths due to vertical channeling of CO2 from the crust. In the case of CO2-dissolved groundwater flowing along the sandstone layers, calcite mineralization is spread over the entire fault surface. In this case, the groundwater flow is interrupted by the fault and there is vertical flow along the fault until a permeable sandstone layer is encountered on the other side of the fault. This vertical migration of CO2-saturated brine causes a release in pressure and subsequent ex-solution of CO2. As a result, modeling allowed us to establish difference in surface expression of CO2 leakage due to two different CO2 migrations scenarios along the fault and helped develop a scheme for selecting appropriate model for CO2 leakage based on surface observation of travertine mounds. A key observation at the Crystal Geyser site is the lateral migration of CO2 seep sites over time. These migrations have been confirmed by isotope studies. In this modeling study, the mechanism for migration of seep sites was studied. A model for permeability reduction due to precipitation of calcite was developed. It is shown using percolation calculations that flow re-routing due to permeability alterations can result in lateral migration of CO2 seeps at rates comparable to those established by isotope dating.

Book Up Scaling Geochemical Reaction Rates for Carbon Dioxide  CO2  in Deep Saline Aquifers

Download or read book Up Scaling Geochemical Reaction Rates for Carbon Dioxide CO2 in Deep Saline Aquifers written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of mineral accessible surface area, and should not be used in reactive transport modeling. Our work showed that reaction rates would be overestimated by three to five times.

Book Aquifer Management for CO2 Sequestration

Download or read book Aquifer Management for CO2 Sequestration written by Abhishek Anchliya and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Storage of carbon dioxide is being actively considered for the reduction of green house gases. To make an impact on the environment CO2 should be put away on the scale of gigatonnes per annum. The storage capacity of deep saline aquifers is estimated to be as high as 1,000 gigatonnes of CO2.(IPCC). Published reports on the potential for sequestration fail to address the necessity of storing CO2 in a closed system. This work addresses issues related to sequestration of CO2 in closed aquifers and the risk associated with aquifer pressurization. Through analytical modeling we show that the required volume for storage and the number of injection wells required are more than what has been envisioned, which renders geologic sequestration of CO2 a profoundly nonfeasible option for the management of CO2 emissions unless brine is produced to create voidage and pressure relief. The results from our analytical model match well with a numerical reservoir simulator including the multiphase physics of CO2 sequestration. Rising aquifer pressurization threatens the seal integrity and poses a risk of CO2 leakage. Hence, monitoring the long-term integrity of CO2 storage reservoirs will be a critical aspect for making geologic sequestration a safe, effective and acceptable method for greenhouse gas control. Verification of long-term CO2 residence in receptor formations and quantification of possible CO2 leaks are required for developing a risk assessment framework. Important aspects of pressure falloff tests for CO2 storage reservoirs are discussed with a focus on reservoir pressure monitoring and leakage detection. The importance of taking regular pressure falloffs for a commercial sequestration project and how this can help in diagnosing an aquifer leak will be discussed. The primary driver for leakage in bulk phase injection is the buoyancy of CO2 under typical deep reservoir conditions. Free-phase CO2 below the top seal is prone to leak if a breach happens in the top seal. Consequently, another objective of this research is to propose a way to engineer the CO2 injection system in order to accelerate CO2 dissolution and trapping. The engineered system eliminates the buoyancy-driven accumulation of free gas and avoids aquifer pressurization by producing brine out of the system. Simulations for 30 years of CO2 injection followed by 1,000 years of natural gradient show how CO2 can be securely and safely stored in a relatively smaller closed aquifer volume and with a greater storage potential. The engineered system increases CO2 dissolution and capillary trapping over what occurs under the bulk phase injection of CO2. This thesis revolves around identification, monitoring and mitigation of the risks associated with geological CO2 sequestration.

Book Reactive Transport Modeling of Cap Rock Integrity During Natural and Engineered CO2 Storage

Download or read book Reactive Transport Modeling of Cap Rock Integrity During Natural and Engineered CO2 Storage written by and published by . This book was released on 2004 with total page 27 pages. Available in PDF, EPUB and Kindle. Book excerpt: Long-term cap rock integrity represents the single most important constraint on the long-term isolation performance of natural and engineered CO2 storage sites. CO2 influx that forms natural accumulations and CO2 injection for EOR/sequestration or saline-aquifer disposal both lead to concomitant geochemical alteration and geomechanical deformation of the cap rock, enhancing or degrading its seal integrity depending on the relative effectiveness of these interdependent processes. Using our reactive transport simulator (NUFT), supporting geochemical databases and software (GEMBOCHS, SUPCRT92), and distinct-element geomechanical model (LDEC), we have shown that influx-triggered mineral dissolution/precipitation reactions within typical shale cap rocks continuously reduce microfracture apertures, while pressure and effective-stress evolution first rapidly increase then slowly constrict them. For a given shale composition, the extent of geochemical enhancement is nearly independent of key reservoir properties (permeability and lateral continuity) that distinguish EOR/sequestration and saline-aquifer settings and CO2 influx parameters (rate, focality, and duration) that distinguish engineered disposal sites and natural accumulations, because these characteristics and parameters have negligible (indirect) impact on mineral dissolution/precipitation rates. In contrast, the extent of geomechanical degradation is highly dependent on these reservoir properties and influx parameters because they effectively dictate magnitude of the pressure perturbation; specifically, initial geomechanical degradation has been shown inversely proportional to reservoir permeability and lateral continuity and proportional to influx rate. Hence, while the extent of geochemical alteration is nearly independent of filling mode, that of geomechanical deformation is significantly more pronounced during engineered injection. This distinction limits the extent to which naturally-occurring CO2 reservoirs and engineered storage sites can be considered analogous. In addition, the pressure increase associated with CO2 accumulation in any compartmentalized system invariably results in net geomechanical aperture widening of cap-rock microfractures. This suggests that ultimate restoration of pre-influx hydrodynamic seal integrity--in both EOR/sequestration and natural accumulation settings--hinges on ultimate geochemical counterbalancing of this geomechanical effect. To explore this hypothesis, we have introduced a new conceptual framework that depicts such counterbalancing as a function of effective diffusion distance and reaction progress. This framework reveals that ultimate counterbalancing of geochemical and geomechanical effects is feasible, which suggests that shale cap rocks may in fact evolve into effective seals in both natural and engineered storage sites.

Book Geophysics and Geosequestration

Download or read book Geophysics and Geosequestration written by Thomas L. Davis and published by Cambridge University Press. This book was released on 2019-05-09 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the geophysical techniques and analysis methods for monitoring subsurface carbon dioxide storage for researchers and industry practitioners.