EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Investigating Device Physics in Bulk heterojunction Organic Solar Cells Through Materials Engineering of Interfaces

Download or read book Investigating Device Physics in Bulk heterojunction Organic Solar Cells Through Materials Engineering of Interfaces written by Kevin M. O'Malley and published by . This book was released on 2013 with total page 49 pages. Available in PDF, EPUB and Kindle. Book excerpt: We have designed and implemented several organic photovoltaic materials with the goal of engineering interfaces within bulk-heterojunction organic solar cells. In one project, we synthesized a C60 bis-adduct surfactant for use as a buffer layer between the photoactive layer and the thermally evaporated metal top contact of conventional structure, bulk-heterojunction organic solar cells. By systematically varying the work function of the contact metal, with and without the surfactant buffer layer, we gained insight into the physics governing the photoactive layer/metal interface and vastly improved the device performance. By applying Mott-Schottky analysis to the capacitance-voltage data obtained for these devices we were able to conclude that the surfactant modifies the metal work function to an appreciable extent, and allows for efficient charge extraction and significantly enhanced open-circuit voltage regardless of the chosen contact metal. This enhancement allowed us to use more air-stable metals that would ordinarily be prohibited due to suboptimal energy level alignment at the electron-collecting electrode. In a second line of investigation, we used impedance spectroscopy to probe the charge carrier recombination dynamics and their effects on device performance in organic solar cells composed of poly(indacenodithiophene-co-phananthrene-quinoxaline), as well as its fluorinated derivatives, and various fullerenes. We find that the morphology of the blended photoactive layer has a strong influence on the electronic density-of-states distribution, which in turn directly affects the recombination rate as well as the achievable open-circuit voltage. We show that attempting to increase the open-circuit voltage through structurally tuning the energy levels of polymer and fullerene inadvertently introduces different bulk phase separation that leads to a reduction in photocurrent. We observe that the recombination lifetime decreases more dramatically with increasing excess photogenerated charge carrier density for blends with more finely separated phases and propose that the resulting increase in recombination surface area leads directly to reduced overall device performance, despite a marked increase in open-circuit voltage.

Book Organic Solar Cells

Download or read book Organic Solar Cells written by Wallace C.H. Choy and published by Springer Science & Business Media. This book was released on 2012-11-19 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.

Book Organic Solar Cells

    Book Details:
  • Author : Qiquan Qiao
  • Publisher : CRC Press
  • Release : 2017-12-19
  • ISBN : 1482229846
  • Pages : 426 pages

Download or read book Organic Solar Cells written by Qiquan Qiao and published by CRC Press. This book was released on 2017-12-19 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current energy consumption mainly depends on fossil fuels that are limited and can cause environmental issues such as greenhouse gas emissions and global warming. These factors have stimulated the search for alternate, clean, and renewable energy sources. Solar cells are some of the most promising clean and readily available energy sources. Plus, the successful utilization of solar energy can help reduce the dependence on fossil fuels. Recently, organic solar cells have gained extensive attention as a next-generation photovoltaic technology due to their light weight, mechanical flexibility, and solution-based cost-effective processing. Organic Solar Cells: Materials, Devices, Interfaces, and Modeling provides an in-depth understanding of the current state of the art of organic solar cell technology. Encompassing the full spectrum of organic solar cell materials, modeling and simulation, and device physics and engineering, this comprehensive text: Discusses active layer, interfacial, and transparent electrode materials Explains how to relate synthesis parameters to morphology of the photoactive layer using molecular dynamics simulations Offers insight into coupling morphology and interfaces with charge transport in organic solar cells Explores photoexcited carrier dynamics, defect states, interface engineering, and nanophase separation Covers inorganic–organic hybrids, tandem structure, and graphene-based polymer solar cells Organic Solar Cells: Materials, Devices, Interfaces, and Modeling makes an ideal reference for scientists and engineers as well as researchers and students entering the field from broad disciplines including chemistry, material science and engineering, physics, nanotechnology, nanoscience, and electrical engineering.

Book Organic Photovoltaics

Download or read book Organic Photovoltaics written by Christoph Brabec and published by John Wiley & Sons. This book was released on 2011-09-22 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing complementary viewpoints from academia as well as technology companies, this book covers the three most important aspects of successful device design: materials, device physics, and manufacturing technologies. It also offers an insight into commercialization concerns, such as packaging technologies, system integration, reel-to-reel large scale manufacturing issues and production costs. With an introduction by Nobel Laureate Alan Heeger.

Book Solar Cell Device Physics

Download or read book Solar Cell Device Physics written by Stephen J. Fonash and published by Elsevier. This book was released on 2012-12-02 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar Cell Device Physics offers a balanced, in-depth qualitative and quantitative treatment of the physical principles and operating characteristics of solar cell devices. Topics covered include photovoltaic energy conversion and solar cell materials and structures, along with homojunction solar cells. Semiconductor-semiconductor heterojunction cells and surface-barrier solar cells are also discussed. This book consists of six chapters and begins by introducing the reader to the basic physical principles and materials properties that are the foundations of photovoltaic energy conversion, with emphasis on various photovoltaic devices capable of efficiently converting solar energy into usable electrical energy. The electronic and optical properties of crystalline, polycrystalline, and amorphous materials with both organic and inorganic materials are considered, together with the manner in which these properties change from one material class to another and the implications of such changes for photovoltaics. Generation, recombination, and bulk transport are also discussed. The two mechanisms of photocarrier collection in solar cells, drift and diffusion, are then compared. The remaining chapters focus on specific solar cell device classes defined in terms of the interface structure employed: homojunctions, semiconductor-semiconductor heterojunctions, and surface-barrier devices. This monograph is appropriate for use as a textbook for graduate students in engineering and the sciences and for seniors in electrical engineering and applied physics, as well as a reference book for those actively involved in solar cell research and development.

Book Elementary Processes in Organic Photovoltaics

Download or read book Elementary Processes in Organic Photovoltaics written by Karl Leo and published by Springer. This book was released on 2016-12-20 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the results of a multi-year research programme funded by the Deutsche Forschungsgemeinschaft (German Research Council), which explains how organic solar cells work. In this new promising photovoltaic technology, carbon-based materials are deposited by low-cost methods onto flexible substrates, thus allowing devices which open completely new applications like transparent coatings for building, solar cells integrated into clothing or packages, and many more. The investigation of organic solar cells is an interdisciplinary topic, covering physics, chemistry and engineering. The different chapters address topics ranging from the synthesis of new organic materials, to the characterization of the elementary processes such as exciton transport and separation, and the principles of highly efficient device design. /div

Book Organic Solar Cells

Download or read book Organic Solar Cells written by Wallace C.H. Choy and published by Springer. This book was released on 2012-11-17 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.

Book Solar Fuels

    Book Details:
  • Author : Theodore Goodson, III
  • Publisher : CRC Press
  • Release : 2017-04-28
  • ISBN : 1315357011
  • Pages : 169 pages

Download or read book Solar Fuels written by Theodore Goodson, III and published by CRC Press. This book was released on 2017-04-28 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for use as a text and reference for those interested in how new materials may be used to capture, store, and use solar energy for alternative energy resources in everyday life, Solar Fuels: Materials, Physics, and Applications discusses the fundamentals of new materials and the physical processes involved in their mechanisms and design. This book offers clear examples of current state-of-the-art organic and inorganic solar cell materials and devices used in the field, and includes experiments testing solar capability along with standardized examples. Last, but not least, it also gives a clear outline of the challenges that need to be addressed moving forward.

Book Comprehensive Guide on Organic and Inorganic Solar Cells

Download or read book Comprehensive Guide on Organic and Inorganic Solar Cells written by Md. Akhtaruzzaman and published by Academic Press. This book was released on 2021-11-18 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive Guide on Organic and Inorganic Solar Cells: Fundamental Concepts to Fabrication Methods is a one-stop, authoritative resource on all types of inorganic, organic and hybrid solar cells, including their theoretical background and the practical knowledge required for fabrication. With chapters rigorously dedicated to a particular type of solar cell, each subchapter takes a detailed look at synthesis recipes, deposition techniques, materials properties and their influence on solar cell performance, including advanced characterization methods with materials selection and experimental techniques. By addressing the evolution of solar cell technologies, second generation thin-film photovoltaics, organic solar cells, and finally, the latest hybrid organic-inorganic approaches, this book benefits students and researchers in solar cell technology to understand the similarities, differences, benefits and challenges of each device. Introduces the basic concepts of different photovoltaic cells to audiences from a wide variety of academic backgrounds Consists of working principles of a particular category of solar technology followed by dissection of every component within the architecture Crucial experimental procedures for the fabrication of solar cell devices are introduced, aiding picture practical application of the technology

Book Organic Semiconductor Devices for Light Detection

Download or read book Organic Semiconductor Devices for Light Detection written by Jonas Kublitski and published by Springer Nature. This book was released on 2022-03-03 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent decades, the way human beings interact with technology has been significantly transformed. In our daily life, ever fewer manually controlled devices are used, giving way to automatized houses, cars, and devices. A significant part of this technological revolution relies on signal detection and evaluation, placing detectors as core devices for further technological developments. This book introduces a versatile contribution to achieving light sensing: Organic Semiconductor Devices for Light Detection. The text is organized to guide the reader through the main concepts of light detection, followed by a introduction to the semiconducting properties of organic molecular solids. The sources of non-idealities in organic photodetectors are presented in chapter 5, and a new device concept, which aims to overcome some of the limitation discussed in the previous chapters, is demonstrated. Finally, an overview of the field is given with a selection of open points for future investigation.

Book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells

Download or read book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells written by Wilfried G. J. H. M. van Sark and published by Springer Science & Business Media. This book was released on 2011-11-16 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today’s solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both „emitter“ and „base-contact/back surface field“ on both sides of a thin crystalline silicon wafer-base (c-Si) where the electrons and holes are photogenerated; at the same time, a-Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. The heterojunction concept is introduced, processes and resulting properties of the materials used in the cell and their heterointerfaces are discussed and characterization techniques and simulation tools are presented.

Book Organic Solar Cells

    Book Details:
  • Author : Pankaj Kumar
  • Publisher : CRC Press
  • Release : 2016-10-03
  • ISBN : 1498723306
  • Pages : 338 pages

Download or read book Organic Solar Cells written by Pankaj Kumar and published by CRC Press. This book was released on 2016-10-03 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains detailed information on the types, structure, fabrication, and characterization of organic solar cells (OSCs). It discusses processes to improve efficiencies and the prevention of degradation in OSCs. It compares the cost-effectiveness of OSCs to those based on crystalline silicon and discusses ways to make OSCs more economical. This book provides a practical guide for the fabrication, processing, and characterization of OSCs and paves the way for further development in OSC technology.

Book Device Physics and Recombination in Polymer Fullerene Bulk Heterojunction Solar Cells

Download or read book Device Physics and Recombination in Polymer Fullerene Bulk Heterojunction Solar Cells written by Steven Hawks and published by . This book was released on 2015 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: My thesis focuses on improving and understanding a relatively new type of solar cell materials system: polymer:fullerene bulk-heterojunction (BHJ) blends. These mixtures have drawn significant interest because they are made from low-cost organic molecules that can be cast from solution, which makes them a potential cheap alternative to traditional solar cell materials like silicon. The drawback, though, is that they are not as efficient at converting sunlight into electricity. My thesis focuses on this issue, and examines the loss processes holding back the efficiency in polymer:fullerene blends as well as investigates new processing methods for overcoming the efficiency limitations. The first chapter introduces the subject of solar cells, and polymer:fullerene solar cells in particular. The second chapter presents a case study on recombination in the high-performance PBDTTT polymer family, wherein we discovered that nongeminate recombination of an anti-Langevin origin was the dominant loss process that ultimately limited the cell efficiency. Electroluminescence measurements revealed that an electron back-transfer process was prevalent in active layers with insufficient PC$_{71}$BM content. This work ultimately made strong headway in understanding what factors limited the relatively unexplored but highly efficient PBDTTT family of polymers. In the next chapter, I further explore the recombination mechanisms in polymer:fullerene BHJs by examining the dark diode ideality factor as a function of temperature in several polymer:fullerene materials systems. By re-deriving the diode law for a polymer:fullerene device with Shockley-Read-Hall recombination, we were able to confirm that trap-assisted recombination through an exponential band-tail of localized states is the dominant recombination process in many polymer:fullerene active layers. In the third chapter, I present a generalized theoretical framework for understanding current transients in planar semiconductor devices, like those discussed above. My analysis reveals that the apparent free-carrier concentration obtained via the usual integral approach is altered by a non-trivial factor of two, sometimes leading to misinterpretations of the charge densities and overall device physics. This new perspective could have far-reaching effects on semiconductor research and technology. Finally, in the last two chapters, I discuss the device physics associated with a relatively novel method for fabricating nanoscale polymer:fullerene BHJs: solution sequential processing (SqP). In particular, I compare recombination in SqP vs. traditionally processed blend-cast devices, and demonstrate that SqP is a more scalable method for making BHJ solar cells. In the final chapter, I examine an unexpected discovery that occurred while working on the content in Chapter 5. Specifically, Chapter 6 examines electrode metal penetration in the SqP quasi-bilayer active layer architecture. Therein, we unexpectedly found that evaporated metal can readily penetrate into fullerene-rich layers, up to $\sim$70 nm or more. The details and consequences of this surprising occurrence are discussed in detail.

Book Emerging Photovoltaic Technologies

Download or read book Emerging Photovoltaic Technologies written by Carlito Ponseca and published by CRC Press. This book was released on 2019-12-19 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need to address the energy problem and formulate a lasting solution to tame climate change has never been so urgent. The rise of various renewable energy sources, such as solar cell technologies, has given humanity a glimpse of hope that can delay the catastrophic effects of these problems after decades of neglect. This review volume provides in-depth discussion of the fundamental photophysical processes as well as the state-of-the-art device engineering of various emerging photovoltaic technologies, including organic (fullerene, non-fullerene, and ternary), dye-sensitized (ruthenium, iron, and quantum dot), and hybrid metal-halide perovskite solar cells. The book is essential reading for graduate and postgraduate students involved in the photophysics and materials science of solar cell technologies.

Book Solution Processable Components for Organic Electronic Devices

Download or read book Solution Processable Components for Organic Electronic Devices written by Beata Luszczynska and published by John Wiley & Sons. This book was released on 2019-06-11 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.

Book Silicon Heterojunction Solar Cells

Download or read book Silicon Heterojunction Solar Cells written by W.R. Fahrner and published by Trans Tech Publications Ltd. This book was released on 2006-08-15 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made to reduce the production costs of “conventional” solar cells (manufactured from monocrystalline silicon using diffusion methods) by instead using cheaper grades of silicon, and simpler pn-junction fabrication. That is the ‘hero’ of this book; the heterojunction solar cell.

Book Organic Nanomaterials

    Book Details:
  • Author : Tomas Torres
  • Publisher : John Wiley & Sons
  • Release : 2013-10-14
  • ISBN : 1118016017
  • Pages : 636 pages

Download or read book Organic Nanomaterials written by Tomas Torres and published by John Wiley & Sons. This book was released on 2013-10-14 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover a new generation of organic nanomaterials and their applications Recent developments in nanoscience and nanotechnology have given rise to a new generation of functional organic nanomaterials with controlled morphology and well-defined properties, which enable a broad range of useful applications. This book explores some of the most important of these organic nanomaterials, describing how they are synthesized and characterized. Moreover, the book explains how researchers have incorporated organic nanomaterials into devices for real-world applications. Featuring contributions from an international team of leading nanoscientists, Organic Nanomaterials is divided into five parts: Part One introduces the fundamentals of nanomaterials and self-assembled nanostructures Part Two examines carbon nanostructures—from fullerenes to carbon nanotubes to graphene—reporting on properties, theoretical studies, and applications Part Three investigates key aspects of some inorganic materials, self-assembled monolayers, organic field effect transistors, and molecular self-assembly at solid surfaces Part Four explores topics that involve both biological aspects and nanomaterials such as biofunctionalized surfaces Part Five offers detailed examples of how organic nanomaterials enhance sensors and molecular photovoltaics Most of the chapters end with a summary highlighting the key points. References at the end of each chapter guide readers to the growing body of original research reports and reviews in the field. Reflecting the interdisciplinary nature of organic nanomaterials, this book is recommended for researchers in chemistry, physics, materials science, polymer science, and chemical and materials engineering. All readers will learn the principles of synthesizing and characterizing new organic nanomaterials in order to support a broad range of exciting new applications.