Download or read book Inverse Problem Theory and Methods for Model Parameter Estimation written by Albert Tarantola and published by SIAM. This book was released on 2005-01-01 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: While the prediction of observations is a forward problem, the use of actual observations to infer the properties of a model is an inverse problem. Inverse problems are difficult because they may not have a unique solution. The description of uncertainties plays a central role in the theory, which is based on probability theory. This book proposes a general approach that is valid for linear as well as for nonlinear problems. The philosophy is essentially probabilistic and allows the reader to understand the basic difficulties appearing in the resolution of inverse problems. The book attempts to explain how a method of acquisition of information can be applied to actual real-world problems, and many of the arguments are heuristic.
Download or read book An Introduction to the Mathematical Theory of Inverse Problems written by Andreas Kirsch and published by Springer Science & Business Media. This book was released on 2011-03-24 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the reader to the area of inverse problems. The study of inverse problems is of vital interest to many areas of science and technology such as geophysical exploration, system identification, nondestructive testing and ultrasonic tomography. The aim of this book is twofold: in the first part, the reader is exposed to the basic notions and difficulties encountered with ill-posed problems. Basic properties of regularization methods for linear ill-posed problems are studied by means of several simple analytical and numerical examples. The second part of the book presents two special nonlinear inverse problems in detail - the inverse spectral problem and the inverse scattering problem. The corresponding direct problems are studied with respect to existence, uniqueness and continuous dependence on parameters. Then some theoretical results as well as numerical procedures for the inverse problems are discussed. The choice of material and its presentation in the book are new, thus making it particularly suitable for graduate students. Basic knowledge of real analysis is assumed. In this new edition, the Factorization Method is included as one of the prominent members in this monograph. Since the Factorization Method is particularly simple for the problem of EIT and this field has attracted a lot of attention during the past decade a chapter on EIT has been added in this monograph as Chapter 5 while the chapter on inverse scattering theory is now Chapter 6.The main changes of this second edition compared to the first edition concern only Chapters 5 and 6 and the Appendix A. Chapter 5 introduces the reader to the inverse problem of electrical impedance tomography.
Download or read book Parameter Estimation and Inverse Problems written by Richard C. Aster and published by Elsevier. This book was released on 2018-10-16 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parameter Estimation and Inverse Problems, Third Edition, is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who do not have an extensive mathematical background. The book is complemented by a companion website that includes MATLAB codes that correspond to examples that are illustrated with simple, easy to follow problems that illuminate the details of particular numerical methods. Updates to the new edition include more discussions of Laplacian smoothing, an expansion of basis function exercises, the addition of stochastic descent, an improved presentation of Fourier methods and exercises, and more. - Features examples that are illustrated with simple, easy to follow problems that illuminate the details of a particular numerical method - Includes an online instructor's guide that helps professors teach and customize exercises and select homework problems - Covers updated information on adjoint methods that are presented in an accessible manner
Download or read book A Taste of Inverse Problems written by Martin Hanke and published by SIAM. This book was released on 2017-01-01 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse problems need to be solved in order to properly interpret indirect measurements. Often, inverse problems are ill-posed and sensitive to data errors. Therefore one has to incorporate some sort of regularization to reconstruct significant information from the given data. A Taste of Inverse Problems: Basic Theory and Examples?presents the main achievements that have emerged in regularization theory over the past 50 years, focusing on linear ill-posed problems and the development of methods that can be applied to them. Some of this material has previously appeared only in journal articles. This book rigorously discusses state-of-the-art inverse problems theory, focusing on numerically relevant aspects and omitting subordinate generalizations; presents diverse real-world applications, important test cases, and possible pitfalls; and treats these applications with the same rigor and depth as the theory.
Download or read book Computational Methods for Inverse Problems written by Curtis R. Vogel and published by SIAM. This book was released on 2002-01-01 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.
Download or read book Geophysical Data Analysis Discrete Inverse Theory written by William Menke and published by Academic Press. This book was released on 2012-12-02 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geophysical Data Analysis: Discrete Inverse Theory is an introductory text focusing on discrete inverse theory that is concerned with parameters that either are truly discrete or can be adequately approximated as discrete. Organized into 12 chapters, the book's opening chapters provide a general background of inverse problems and their corresponding solution, as well as some of the basic concepts from probability theory that are applied throughout the text. Chapters 3-7 discuss the solution of the canonical inverse problem, that is, the linear problem with Gaussian statistics, and discussions on problems that are non-Gaussian and nonlinear are covered in Chapters 8 and 9. Chapters 10-12 present examples of the use of inverse theory and a discussion on the numerical algorithms that must be employed to solve inverse problems on a computer. This book is of value to graduate students and many college seniors in the applied sciences.
Download or read book Inverse Problems written by Mathias Richter and published by Birkhäuser. This book was released on 2016-11-24 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: The overall goal of the book is to provide access to the regularized solution of inverse problems relevant in geophysics without requiring more mathematical knowledge than is taught in undergraduate math courses for scientists and engineers. From abstract analysis only the concept of functions as vectors is needed. Function spaces are introduced informally in the course of the text, when needed. Additionally, a more detailed, but still condensed introduction is given in Appendix B. A second goal is to elaborate the single steps to be taken when solving an inverse problem: discretization, regularization and practical solution of the regularized optimization problem. These steps are shown in detail for model problems from the fields of inverse gravimetry and seismic tomography. The intended audience is mathematicians, physicists and engineers having a good working knowledge of linear algebra and analysis at the upper undergraduate level.
Download or read book The Inverse Problem of Scattering Theory written by Z.S. Agranovich and published by Courier Dover Publications. This book was released on 2020-05-21 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph by two Soviet experts in mathematical physics was a major contribution to inverse scattering theory. The two-part treatment examines the boundary-value problem with and without singularities. 1963 edition.
Download or read book Inverse Problems Tikhonov Theory And Algorithms written by Kazufumi Ito and published by World Scientific. This book was released on 2014-08-28 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse problems arise in practical applications whenever one needs to deduce unknowns from observables. This monograph is a valuable contribution to the highly topical field of computational inverse problems. Both mathematical theory and numerical algorithms for model-based inverse problems are discussed in detail. The mathematical theory focuses on nonsmooth Tikhonov regularization for linear and nonlinear inverse problems. The computational methods include nonsmooth optimization algorithms, direct inversion methods and uncertainty quantification via Bayesian inference.The book offers a comprehensive treatment of modern techniques, and seamlessly blends regularization theory with computational methods, which is essential for developing accurate and efficient inversion algorithms for many practical inverse problems.It demonstrates many current developments in the field of computational inversion, such as value function calculus, augmented Tikhonov regularization, multi-parameter Tikhonov regularization, semismooth Newton method, direct sampling method, uncertainty quantification and approximate Bayesian inference. It is written for graduate students and researchers in mathematics, natural science and engineering.
Download or read book Inverse Problem Theory written by A. Tarantola and published by Elsevier. This book was released on 2013-10-14 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse Problem Theory is written for physicists, geophysicists and all scientists facing the problem of quantitative interpretation of experimental data. Although it contains a lot of mathematics, it is not intended as a mathematical book, but rather tries to explain how a method of acquisition of information can be applied to the actual world.The book provides a comprehensive, up-to-date description of the methods to be used for fitting experimental data, or to estimate model parameters, and to unify these methods into the Inverse Problem Theory. The first part of the book deals with discrete problems and describes Maximum likelihood, Monte Carlo, Least squares, and Least absolute values methods. The second part deals with inverse problems involving functions.The book is almost completely self-contained, with all important concepts carefully introduced. Although theoretical concepts are strongly emphasized, the author has ensured that all the useful formulas are listed, with many special cases included. The book will thus serve equally well as a reference manual for researchers needing to refresh their memories on a given algorithm, or as a textbook in a course for undergraduate or graduate students.
Download or read book Geophysical Inverse Theory written by Robert L. Parker and published by Princeton University Press. This book was released on 2019-12-31 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: In many physical sciences, the most natural description of a system is with a function of position or time. In principle, infinitely many numbers are needed to specify that function, but in practice only finitely many measurements can be made. Inverse theory concerns the mathematical techniques that enable researchers to use the available information to build a model of the unknown system or to determine its essential properties. In Geophysical Inverse Theory, Robert Parker provides a systematic development of inverse theory at the graduate and professional level that emphasizes a rigorous yet practical solution of inverse problems, with examples from experimental observations in geomagnetism, seismology, gravity, electromagnetic sounding, and interpolation. Although illustrated with examples from geophysics, this book has broad implications for researchers in applied disciplines from materials science and engineering to astrophysics, oceanography, and meteorology. Parker's approach is to avoid artificial statistical constructs and to emphasize instead the reasonable assumptions researchers must make to reduce the ambiguity that inevitably arises in complex problems. The structure of the book follows a natural division in the subject into linear theory, in which the measured quantities are linear functionals of the unknown models, and nonlinear theory, which covers all other systems but is not nearly so well understood. The book covers model selection as well as techniques for drawing firm conclusions about the earth independent of any particular model.
Download or read book Mathematical Modelling written by Seppo Pohjolainen and published by Springer. This book was released on 2016-07-14 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.
Download or read book Regularization of Inverse Problems written by Heinz Werner Engl and published by Springer Science & Business Media. This book was released on 2000-03-31 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the mathematical theory of regularization methods and gives an account of the currently available results about regularization methods for linear and nonlinear ill-posed problems. Both continuous and iterative regularization methods are considered in detail with special emphasis on the development of parameter choice and stopping rules which lead to optimal convergence rates.
Download or read book Inverse Problems written by Alexander G. Ramm and published by Springer Science & Business Media. This book was released on 2005-12-19 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse Problems is a monograph which contains a self-contained presentation of the theory of several major inverse problems and the closely related results from the theory of ill-posed problems. The book is aimed at a large audience which include graduate students and researchers in mathematical, physical, and engineering sciences and in the area of numerical analysis.
Download or read book Discrete Inverse Problems written by Per Christian Hansen and published by SIAM. This book was released on 2010-01-01 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to the practical treatment of inverse problems by means of numerical methods, with a focus on basic mathematical and computational aspects. To solve inverse problems, we demonstrate that insight about them goes hand in hand with algorithms.
Download or read book Statistical and Computational Inverse Problems written by Jari Kaipio and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the statistical mechanics approach to computational solution of inverse problems, an innovative area of current research with very promising numerical results. The techniques are applied to a number of real world applications such as limited angle tomography, image deblurring, electical impedance tomography, and biomagnetic inverse problems. Contains detailed examples throughout and includes a chapter on case studies where such methods have been implemented in biomedical engineering.
Download or read book Inverse and Ill posed Problems written by Sergey I. Kabanikhin and published by Walter de Gruyter. This book was released on 2011-12-23 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of ill-posed problems originated in an unusual way. As a rule, a new concept is a subject in which its creator takes a keen interest. The concept of ill-posed problems was introduced by Hadamard with the comment that these problems are physically meaningless and not worthy of the attention of serious researchers. Despite Hadamard's pessimistic forecasts, however, his unloved "child" has turned into a powerful theory whose results are used in many fields of pure and applied mathematics. What is the secret of its success? The answer is clear. Ill-posed problems occur everywhere and it is unreasonable to ignore them. Unlike ill-posed problems, inverse problems have no strict mathematical definition. In general, they can be described as the task of recovering a part of the data of a corresponding direct (well-posed) problem from information about its solution. Inverse problems were first encountered in practice and are mostly ill-posed. The urgent need for their solution, especially in geological exploration and medical diagnostics, has given powerful impetus to the development of the theory of ill-posed problems. Nowadays, the terms "inverse problem" and "ill-posed problem" are inextricably linked to each other. Inverse and ill-posed problems are currently attracting great interest. A vast literature is devoted to these problems, making it necessary to systematize the accumulated material. This book is the first small step in that direction. We propose a classification of inverse problems according to the type of equation, unknowns and additional information. We consider specific problems from a single position and indicate relationships between them. The problems relate to different areas of mathematics, such as linear algebra, theory of integral equations, integral geometry, spectral theory and mathematical physics. We give examples of applied problems that can be studied using the techniques we describe. This book was conceived as a textbook on the foundations of the theory of inverse and ill-posed problems for university students. The author's intention was to explain this complex material in the most accessible way possible. The monograph is aimed primarily at those who are just beginning to get to grips with inverse and ill-posed problems but we hope that it will be useful to anyone who is interested in the subject.