EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Introduction to Theoretical Neurobiology  Linear cable theory and dendritic structure

Download or read book Introduction to Theoretical Neurobiology Linear cable theory and dendritic structure written by Henry Clavering Tuckwell and published by Cambridge University Press. This book was released on 1988 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explaining the basic properties of a neuron, this volume develops mathematical theories for the way neurons respond to the various stimuli they receive. It contains descriptions and analyses of the principal mathematical models, providing a brief review of the basic neuroanatomical and neurophysiological facts with the mathematical theories.

Book Introduction to Theoretical Neurobiology  Volume 1  Linear Cable Theory and Dendritic Structure

Download or read book Introduction to Theoretical Neurobiology Volume 1 Linear Cable Theory and Dendritic Structure written by Henry C. Tuckwell and published by Cambridge University Press. This book was released on 2006-04-20 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: The human brain contains billions of nerve cells whose activity plays a critical role in the way we behave, feel, perceive, and think. This two-volume set explains the basic properties of a neuron--an electrically active nerve cell--and develops mathematical theories for the way neurons respond to the various stimuli they receive. Volume 1 contains descriptions and analyses of the principle mathematical models that have been developed for neurons in the past thirty years. It provides a brief review of the basic neuroanatomical and neurophysiological facts that will form the focus of the mathematical treatment. Tuckwell discusses the mathematical theories, beginning with the theory of membrane potentials. He then goes on to treat the Lapicque model, linear cable theory, and time-dependent solutions of the cable equations. He concludes with a description of Rall's model nerve cell. Because the level of mathematics increases steadily upward from Chapter Two some familiarity with differential equations and linear algebra is desirable.

Book Stochastic Methods in Neuroscience

Download or read book Stochastic Methods in Neuroscience written by Carlo Laing and published by OUP Oxford. This book was released on 2009-09-24 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Great interest is now being shown in computational and mathematical neuroscience, fuelled in part by the rise in computing power, the ability to record large amounts of neurophysiological data, and advances in stochastic analysis. These techniques are leading to biophysically more realistic models. It has also become clear that both neuroscientists and mathematicians profit from collaborations in this exciting research area. Graduates and researchers in computational neuroscience and stochastic systems, and neuroscientists seeking to learn more about recent advances in the modelling and analysis of noisy neural systems, will benefit from this comprehensive overview. The series of self-contained chapters, each written by experts in their field, covers key topics such as: Markov chain models for ion channel release; stochastically forced single neurons and populations of neurons; statistical methods for parameter estimation; and the numerical approximation of these stochastic models. Each chapter gives an overview of a particular topic, including its history, important results in the area, and future challenges, and the text comes complete with a jargon-busting index of acronyms to allow readers to familiarize themselves with the language used.

Book Biophysics of Computation

    Book Details:
  • Author : Christof Koch
  • Publisher : Oxford University Press
  • Release : 2004-10-28
  • ISBN : 0195181999
  • Pages : 587 pages

Download or read book Biophysics of Computation written by Christof Koch and published by Oxford University Press. This book was released on 2004-10-28 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes.Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation.Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.

Book The Self Organizing Brain  From Growth Cones to Functional Networks

Download or read book The Self Organizing Brain From Growth Cones to Functional Networks written by Jaap Pelt and published by Elsevier. This book was released on 1994-10-11 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book concentrates on the organizational level of neurons and neuronal networks under the unifying theme "The Self-Organizing Brain - From Growth Cones to Functional Networks". Such a theme is attractive because it incorporates all phases in the emergence of complexity and (adaptive) organization, as well as involving processes that remain operative in the mature state. The order of the sections follows successive levels of organization from neuronal growth cones, neurite formation, neuronal morphology and signal processing to network development, network dynamics and, finally, to the formation of functional circuits.

Book Single Neuron Computation

Download or read book Single Neuron Computation written by Thomas M. McKenna and published by Academic Press. This book was released on 2014-05-19 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real neurons is essential to the design of enhanced processor elements for use in the next generation of ANNs.The book covers computation in dendrites and spines, computational aspects of ion channels, synapses, patterned discharge and multistate neurons, and stochastic models of neuron dynamics. It is the most up-to-date presentation of biophysical and computational methods.

Book Reconstruction  Identification and Implementation Methods for Spiking Neural Circuits

Download or read book Reconstruction Identification and Implementation Methods for Spiking Neural Circuits written by Dorian Florescu and published by Springer. This book was released on 2017-04-24 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is motivated by the ongoing open question of how information in the outside world is represented and processed by the brain. Consequently, several novel methods are developed. A new mathematical formulation is proposed for the encoding and decoding of analog signals using integrate-and-fire neuron models. Based on this formulation, a novel algorithm, significantly faster than the state-of-the-art method, is proposed for reconstructing the input of the neuron. Two new identification methods are proposed for neural circuits comprising a filter in series with a spiking neuron model. These methods reduce the number of assumptions made by the state-of-the-art identification framework, allowing for a wider range of models of sensory processing circuits to be inferred directly from input-output observations. A third contribution is an algorithm that computes the spike time sequence generated by an integrate-and-fire neuron model in response to the output of a linear filter, given the input of the filter encoded with the same neuron model.

Book Modeling in the Neurosciences

Download or read book Modeling in the Neurosciences written by R.R. Poznanski and published by Routledge. This book was released on 2019-01-22 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: With contributions from more than 40 renowned experts, Modeling in the Neurosciences: From Ionic Channels to Neural Networks is essential for those interested in neuronal modeling and quantitative neiroscience. Focusing on new mathematical and computer models, techniques and methods, this monograph represents a cohesive and comprehensive treatment

Book Cellular Biophysics and Modeling

Download or read book Cellular Biophysics and Modeling written by Greg Conradi Smith and published by Cambridge University Press. This book was released on 2019-03-14 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: What every neuroscientist should know about the mathematical modeling of excitable cells. Combining empirical physiology and nonlinear dynamics, this text provides an introduction to the simulation and modeling of dynamic phenomena in cell biology and neuroscience. It introduces mathematical modeling techniques alongside cellular electrophysiology. Topics include membrane transport and diffusion, the biophysics of excitable membranes, the gating of voltage and ligand-gated ion channels, intracellular calcium signalling, and electrical bursting in neurons and other excitable cell types. It introduces mathematical modeling techniques such as ordinary differential equations, phase plane, and bifurcation analysis of single-compartment neuron models. With analytical and computational problem sets, this book is suitable for life sciences majors, in biology to neuroscience, with one year of calculus, as well as graduate students looking for a primer on membrane excitability and calcium signalling.

Book Evolvable Systems  From Biology to Hardware

Download or read book Evolvable Systems From Biology to Hardware written by Andy M. Tyrrell and published by Springer. This book was released on 2007-10-08 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of evolving machines, whose origins can be traced to the cybernetics movementofthe1940sand1950s,hasrecentlyresurgedintheformofthenascent ?eld of bio-inspired systems and evolvable hardware. The inaugural workshop, Towards Evolvable Hardware, took place in Lausanne in October 1995, followed by the First International Conference on Evolvable Systems: From Biology to Hardware (ICES), held in Tsukuba, Japan in October 1996. The second ICES conference was held in Lausanne in September 1998, with the third and fourth being held in Edinburgh, April 2000 and Tokyo, October 2001 respectively. This has become the leading conference in the ?eld of evolvable systems and the 2003 conference promised to be at least as good as, if not better than, the four that preceeded it. The ?fth international conference was built on the success of its predec- sors, aiming at presenting the latest developments in the ?eld. In addition, it brought together researchers who use biologically inspired concepts to imp- ment real systems in arti?cial intelligence, arti?cial life, robotics, VLSI design and related domains. We would say that this ?fth conference followed on from the previous four in that it consisted of a number of high-quality interesting thought-provoking papers.

Book Numerical Methods and Analysis of Multiscale Problems

Download or read book Numerical Methods and Analysis of Multiscale Problems written by Alexandre L. Madureira and published by Springer. This book was released on 2017-02-15 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.

Book Stochastic Processes in the Neurosciences

Download or read book Stochastic Processes in the Neurosciences written by Henry C. Tuckwell and published by SIAM. This book was released on 1989-01-01 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is centered on quantitative analysis of nerve-cell behavior. The work is foundational, with many higher order problems still remaining, especially in connection with neural networks. Thoroughly addressed topics include stochastic problems in neurobiology, and the treatment of the theory of related Markov processes.

Book Spectral Analysis  Differential Equations and Mathematical Physics  A Festschrift in Honor of Fritz Gesztesy s 60th Birthday

Download or read book Spectral Analysis Differential Equations and Mathematical Physics A Festschrift in Honor of Fritz Gesztesy s 60th Birthday written by Helge Holden and published by American Mathematical Soc.. This book was released on 2013-07-08 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains twenty contributions in the area of mathematical physics where Fritz Gesztesy made profound contributions. There are three survey papers in spectral theory, differential equations, and mathematical physics, which highlight, in particu

Book Mathematics for Neuroscientists

Download or read book Mathematics for Neuroscientists written by Fabrizio Gabbiani and published by Academic Press. This book was released on 2017-02-04 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics for Neuroscientists, Second Edition, presents a comprehensive introduction to mathematical and computational methods used in neuroscience to describe and model neural components of the brain from ion channels to single neurons, neural networks and their relation to behavior. The book contains more than 200 figures generated using Matlab code available to the student and scholar. Mathematical concepts are introduced hand in hand with neuroscience, emphasizing the connection between experimental results and theory. Fully revised material and corrected text Additional chapters on extracellular potentials, motion detection and neurovascular coupling Revised selection of exercises with solutions More than 200 Matlab scripts reproducing the figures as well as a selection of equivalent Python scripts

Book Computational Modelling of the Brain

Download or read book Computational Modelling of the Brain written by Michele Giugliano and published by Springer Nature. This book was released on 2022-04-26 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers an up-to-date overview of essential concepts and modern approaches to computational modelling, including the use of experimental techniques related to or directly inspired by them. The book introduces, at increasing levels of complexity and with the non-specialist in mind, state-of-the-art topics ranging from single-cell and molecular descriptions to circuits and networks. Four major themes are covered, including subcellular modelling of ion channels and signalling pathways at the molecular level, single-cell modelling at different levels of spatial complexity, network modelling from local microcircuits to large-scale simulations of entire brain areas and practical examples. Each chapter presents a systematic overview of a specific topic and provides the reader with the fundamental tools needed to understand the computational modelling of neural dynamics. This book is aimed at experimenters and graduate students with little or no prior knowledge of modelling who are interested in learning about computational models from the single molecule to the inter-areal communication of brain structures. The book will appeal to computational neuroscientists, engineers, physicists and mathematicians interested in contributing to the field of neuroscience. Chapters 6, 10 and 11 are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Book Stochastic Biomathematical Models

Download or read book Stochastic Biomathematical Models written by Mostafa Bachar and published by Springer. This book was released on 2012-10-19 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic biomathematical models are becoming increasingly important as new light is shed on the role of noise in living systems. In certain biological systems, stochastic effects may even enhance a signal, thus providing a biological motivation for the noise observed in living systems. Recent advances in stochastic analysis and increasing computing power facilitate the analysis of more biophysically realistic models, and this book provides researchers in computational neuroscience and stochastic systems with an overview of recent developments. Key concepts are developed in chapters written by experts in their respective fields. Topics include: one-dimensional homogeneous diffusions and their boundary behavior, large deviation theory and its application in stochastic neurobiological models, a review of mathematical methods for stochastic neuronal integrate-and-fire models, stochastic partial differential equation models in neurobiology, and stochastic modeling of spreading cortical depression.

Book An Introduction to the Mathematics of Neurons

Download or read book An Introduction to the Mathematics of Neurons written by F. C. Hoppensteadt and published by Cambridge University Press. This book was released on 1997-06-28 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the signal processing aspects of neural networks. It begins with a presentation of the necessary background material in electronic circuits, mathematical modeling and analysis, signal processing, and neurosciences, and then proceeds to applications. These applications include small networks of neurons, such as those used in control of warm-up and flight in moths and control of respiration during exercise in humans. Next, a theory of mnemonic surfaces is developed and studied and material on pattern formation and cellular automata is presented. Finally, large networks are studied, such as the thalamus-reticular complex circuit, believed to be involved in focusing attention, and the development of connections in the visual cortex. Additional material is also provided about nonlinear wave propagation in networks. This book will serve as an excellent text for advanced undergraduates and graduates in the physical sciences, mathematics, engineering, medicine and life sciences.