EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Introduction to the Variational Formulation in Mechanics

Download or read book Introduction to the Variational Formulation in Mechanics written by Edgardo O. Taroco and published by John Wiley & Sons. This book was released on 2020-02-25 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces readers to the fundamentals and applications of variational formulations in mechanics Nearly 40 years in the making, this book provides students with the foundation material of mechanics using a variational tapestry. It is centered around the variational structure underlying the Method of Virtual Power (MVP). The variational approach to the modeling of physical systems is the preferred approach to address complex mathematical modeling of both continuum and discrete media. This book provides a unified theoretical framework for the construction of a wide range of multiscale models. Introduction to the Variational Formulation in Mechanics: Fundamentals and Applications enables readers to develop, on top of solid mathematical (variational) bases, and following clear and precise systematic steps, several models of physical systems, including problems involving multiple scales. It covers: Vector and Tensor Algebra; Vector and Tensor Analysis; Mechanics of Continua; Hyperelastic Materials; Materials Exhibiting Creep; Materials Exhibiting Plasticity; Bending of Beams; Torsion of Bars; Plates and Shells; Heat Transfer; Incompressible Fluid Flow; Multiscale Modeling; and more. A self-contained reader-friendly approach to the variational formulation in the mechanics Examines development of advanced variational formulations in different areas within the field of mechanics using rather simple arguments and explanations Illustrates application of the variational modeling to address hot topics such as the multiscale modeling of complex material behavior Presentation of the Method of Virtual Power as a systematic tool to construct mathematical models of physical systems gives readers a fundamental asset towards the architecture of even more complex (or open) problems Introduction to the Variational Formulation in Mechanics: Fundamentals and Applications is a ideal book for advanced courses in engineering and mathematics, and an excellent resource for researchers in engineering, computational modeling, and scientific computing.

Book Computational Solid Mechanics

Download or read book Computational Solid Mechanics written by Marco L. Bittencourt and published by CRC Press. This book was released on 2014-09-19 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a Systematic Approach for Modeling Mechanical Models Using Variational Formulation-Uses Real-World Examples and Applications of Mechanical ModelsUtilizing material developed in a classroom setting and tested over a 12-year period, Computational Solid Mechanics: Variational Formulation and High-Order Approximation details an approach that e

Book An Introduction to Modern Variational Techniques in Mechanics and Engineering

Download or read book An Introduction to Modern Variational Techniques in Mechanics and Engineering written by Bozidar D. Vujanovic and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Atanackovic has good track record with Birkhauser: his "Theory of Elasticity" book (4072-X) has been well reviewed. * Current text has received two excellent pre-pub reviews. * May be used as textbook in advanced undergrad/beginning grad advanced dynamics courses in engineering, physics, applied math departments. *Also useful as self-study reference for researchers and practitioners. * Many examples and novel applications throughout. Competitive literature---Meirovich, Goldstein---is outdated and does not include the synthesis of topics presented here.

Book The Variational Principles of Mechanics

Download or read book The Variational Principles of Mechanics written by Cornelius Lanczos and published by . This book was released on 1970 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Variational Models and Methods in Solid and Fluid Mechanics

Download or read book Variational Models and Methods in Solid and Fluid Mechanics written by Francesco dell'Isola and published by Springer Science & Business Media. This book was released on 2012-01-15 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: F. dell'Isola, L. Placidi: Variational principles are a powerful tool also for formulating field theories. - F. dell'Isola, P. Seppecher, A. Madeo: Beyond Euler-Cauchy Continua. The structure of contact actions in N-th gradient generalized continua: a generalization of the Cauchy tetrahedron argument. - B. Bourdin, G.A. Francfort: Fracture. - S. Gavrilyuk: Multiphase flow modeling via Hamilton's principle. - V. L. Berdichevsky: Introduction to stochastic variational problems. - A. Carcaterra: New concepts in damping generation and control: theoretical formulation and industrial applications. - F. dell'Isola, P. Seppecher, A. Madeo: Fluid shock wave generation at solid-material discontinuity surfaces in porous media. Variational methods give an efficient and elegant way to formulate and solve mathematical problems that are of interest to scientists and engineers. In this book three fundamental aspects of the variational formulation of mechanics will be presented: physical, mathematical and applicative ones. The first aspect concerns the investigation of the nature of real physical problems with the aim of finding the best variational formulation suitable to those problems. The second aspect is the study of the well-posedeness of those mathematical problems which need to be solved in order to draw previsions from the formulated models. And the third aspect is related to the direct application of variational analysis to solve real engineering problems.

Book Variational Principles in Classical Mechanics

Download or read book Variational Principles in Classical Mechanics written by Douglas Cline and published by . This book was released on 2018-08 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Two dramatically different philosophical approaches to classical mechanics were proposed during the 17th - 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These variational formulations now play a pivotal role in science and engineering.This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared. Applications to a wide variety of topics illustrate the intellectual beauty, remarkable power, and broad scope provided by use of variational principles in physics.The second edition adds discussion of the use of variational principles applied to the following topics:(1) Systems subject to initial boundary conditions(2) The hierarchy of related formulations based on action, Lagrangian, Hamiltonian, and equations of motion, to systems that involve symmetries.(3) Non-conservative systems.(4) Variable-mass systems.(5) The General Theory of Relativity.Douglas Cline is a Professor of Physics in the Department of Physics and Astronomy, University of Rochester, Rochester, New York.

Book Introduction to Numerical Methods for Variational Problems

Download or read book Introduction to Numerical Methods for Variational Problems written by Hans Petter Langtangen and published by Springer Nature. This book was released on 2019-09-26 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook teaches finite element methods from a computational point of view. It focuses on how to develop flexible computer programs with Python, a programming language in which a combination of symbolic and numerical tools is used to achieve an explicit and practical derivation of finite element algorithms. The finite element library FEniCS is used throughout the book, but the content is provided in sufficient detail to ensure that students with less mathematical background or mixed programming-language experience will equally benefit. All program examples are available on the Internet.

Book Variational Principles in Physics

Download or read book Variational Principles in Physics written by Jean-Louis Basdevant and published by Springer Science & Business Media. This book was released on 2007-03-12 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Variational principles have proven to be surprisingly fertile. For example, Fermat used variational methods to demonstrate that light follows the fastest route from one point to another, an idea which came to be a cornerstone of geometrical optics. This book explains variational principles and charts their use throughout modern physics. It examines the analytical mechanics of Lagrange and Hamilton, the basic tools of any physicist. The book also offers simple but rich first impressions of Einstein’s General Relativity, Feynman’s Quantum Mechanics, and more that reveal amazing interconnections between various fields of physics.

Book An Introduction to Lagrangian Mechanics

Download or read book An Introduction to Lagrangian Mechanics written by Alain Jean Brizard and published by World Scientific. This book was released on 2008 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Lagrangian Mechanics begins with a proper historical perspective on the Lagrangian method by presenting Fermat's Principle of Least Time (as an introduction to the Calculus of Variations) as well as the principles of Maupertuis, Jacobi, and d'Alembert that preceded Hamilton's formulation of the Principle of Least Action, from which the Euler?Lagrange equations of motion are derived. Other additional topics not traditionally presented in undergraduate textbooks include the treatment of constraint forces in Lagrangian Mechanics; Routh's procedure for Lagrangian systems with symmetries; the art of numerical analysis for physical systems; variational formulations for several continuous Lagrangian systems; an introduction to elliptic functions with applications in Classical Mechanics; and Noncanonical Hamiltonian Mechanics and perturbation theory.This textbook is suitable for undergraduate students who have acquired the mathematical skills needed to complete a course in Modern Physics.

Book Mechanics of Structures

Download or read book Mechanics of Structures written by Walter Wunderlich and published by CRC Press. This book was released on 2002-12-26 with total page 911 pages. Available in PDF, EPUB and Kindle. Book excerpt: Resoundingly popular in its first edition, the second edition of Mechanics of Structures: Variational and Computational Methods promises to be even more so, with broader coverage, expanded discussions, and a streamlined presentation. The authors begin by describing the behavior of deformable solids through the differential equations for the

Book An Introduction to Lagrangian Mechanics

Download or read book An Introduction to Lagrangian Mechanics written by Alain J Brizard and published by World Scientific Publishing Company. This book was released on 2014-11-28 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Lagrangian Mechanics begins with a proper historical perspective on the Lagrangian method by presenting Fermat's Principle of Least Time (as an introduction to the Calculus of Variations) as well as the principles of Maupertuis, Jacobi, and d'Alembert that preceded Hamilton's formulation of the Principle of Least Action, from which the Euler–Lagrange equations of motion are derived. Other additional topics not traditionally presented in undergraduate textbooks include the treatment of constraint forces in Lagrangian Mechanics; Routh's procedure for Lagrangian systems with symmetries; the art of numerical analysis for physical systems; variational formulations for several continuous Lagrangian systems; an introduction to elliptic functions with applications in Classical Mechanics; and Noncanonical Hamiltonian Mechanics and perturbation theory. The Second Edition includes a larger selection of examples and problems (with hints) in each chapter and continues the strong emphasis of the First Edition on the development and application of mathematical methods (mostly calculus) to the solution of problems in Classical Mechanics. New material has been added to most chapters. For example, a new derivation of the Noether theorem for discrete Lagrangian systems is given and a modified Rutherford scattering problem is solved exactly to show that the total scattering cross section associated with a confined potential (i.e., which vanishes beyond a certain radius) yields the hard-sphere result. The Frenet-Serret formulas for the Coriolis-corrected projectile motion are presented, where the Frenet-Serret torsion is shown to be directly related to the Coriolis deflection, and a new treatment of the sleeping-top problem is given.

Book Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds

Download or read book Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds written by Taeyoung Lee and published by Springer. This book was released on 2017-08-14 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible introduction to the variational formulation of Lagrangian and Hamiltonian mechanics, with a novel emphasis on global descriptions of the dynamics, which is a significant conceptual departure from more traditional approaches based on the use of local coordinates on the configuration manifold. In particular, we introduce a general methodology for obtaining globally valid equations of motion on configuration manifolds that are Lie groups, homogeneous spaces, and embedded manifolds, thereby avoiding the difficulties associated with coordinate singularities. The material is presented in an approachable fashion by considering concrete configuration manifolds of increasing complexity, which then motivates and naturally leads to the more general formulation that follows. Understanding of the material is enhanced by numerous in-depth examples throughout the book, culminating in non-trivial applications involving multi-body systems. This book is written for a general audience of mathematicians, engineers, and physicists with a basic knowledge of mechanics. Some basic background in differential geometry is helpful, but not essential, as the relevant concepts are introduced in the book, thereby making the material accessible to a broad audience, and suitable for either self-study or as the basis for a graduate course in applied mathematics, engineering, or physics.

Book Variational Principles in Dynamics and Quantum Theory

Download or read book Variational Principles in Dynamics and Quantum Theory written by Wolfgang Yourgrau and published by Courier Corporation. This book was released on 2012-04-26 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: DIVHistorical, theoretical survey with many insights, much hard-to-find material. Hamilton’s principle, Hamilton-Jacobi equation, etc. /div

Book Variational Methods in Theoretical Mechanics

Download or read book Variational Methods in Theoretical Mechanics written by J.T. Oden and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook written for use in a graduate-level course for students of mechanics and engineering science. It is designed to cover the essential features of modern variational methods and to demonstrate how a number of basic mathematical concepts can be used to produce a unified theory of variational mechanics. As prerequisite to using this text, we assume that the student is equipped with an introductory course in functional analysis at a level roughly equal to that covered, for example, in Kolmogorov and Fomin (Functional Analysis, Vol. I, Graylock, Rochester, 1957) and possibly a graduate-level course in continuum mechanics. Numerous references to supplementary material are listed throughout the book. We are indebted to Professor Jim Douglas of the University of Chicago, who read an earlier version of the manuscript and whose detailed suggestions were extremely helpful in preparing the final draft. He also gratefully acknowledge that much of our own research work on variational theory was supported by the U.S. Air Force Office of Scientific Research. He are indebted to Mr. Ming-Goei Sheu for help in proofreading. Finally, we wish to express thanks to Mrs. Marilyn Gude for her excellent and pains taking job of typing the manuscript. J. T. ODEN J. N. REDDY Table of Contents PREFACE 1. INTRODUCTION 1.1 The Role of Variational Theory in Mechanics. 1 1.2 Some Historical Comments ......... . 2 1.3 Plan of Study ............... . 5 7 2. MATHEMATICAL FOUNDATIONS OF CLASSICAL VARIATIONAL THEORY 7 2.1 Introduction . . . . . . . .

Book Energy Principles and Variational Methods in Applied Mechanics

Download or read book Energy Principles and Variational Methods in Applied Mechanics written by J. N. Reddy and published by John Wiley & Sons. This book was released on 2017-07-21 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to using energy principles and variational methods for solving problems in solid mechanics This book provides a systematic, highly practical introduction to the use of energy principles, traditional variational methods, and the finite element method for the solution of engineering problems involving bars, beams, torsion, plane elasticity, trusses, and plates. It begins with a review of the basic equations of mechanics, the concepts of work and energy, and key topics from variational calculus. It presents virtual work and energy principles, energy methods of solid and structural mechanics, Hamilton’s principle for dynamical systems, and classical variational methods of approximation. And it takes a more unified approach than that found in most solid mechanics books, to introduce the finite element method. Featuring more than 200 illustrations and tables, this Third Edition has been extensively reorganized and contains much new material, including a new chapter devoted to the latest developments in functionally graded beams and plates. Offers clear and easy-to-follow descriptions of the concepts of work, energy, energy principles and variational methods Covers energy principles of solid and structural mechanics, traditional variational methods, the least-squares variational method, and the finite element, along with applications for each Provides an abundance of examples, in a problem-solving format, with descriptions of applications for equations derived in obtaining solutions to engineering structures Features end-of-the-chapter problems for course assignments, a Companion Website with a Solutions Manual, Instructor's Manual, figures, and more Energy Principles and Variational Methods in Applied Mechanics, Third Edition is both a superb text/reference for engineering students in aerospace, civil, mechanical, and applied mechanics, and a valuable working resource for engineers in design and analysis in the aircraft, automobile, civil engineering, and shipbuilding industries.

Book Energy and Variational Methods in Applied Mechanics

Download or read book Energy and Variational Methods in Applied Mechanics written by J. N. Reddy and published by Wiley-Interscience. This book was released on 1984-09-20 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical introduction to the use of the finite-element method and variational methods to solve engineering problems about beams, bars, torsion, and plane elasticity. Includes a concise section on composite-material laminated plates and shells. Contains numerous examples, exercises, problems, and references.

Book Variational Principles of Continuum Mechanics

Download or read book Variational Principles of Continuum Mechanics written by Victor Berdichevsky and published by Springer Science & Business Media. This book was released on 2009-09-18 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thereareabout500booksonvariationalprinciples. Theyareconcernedmostlywith the mathematical aspects of the topic. The major goal of this book is to discuss the physical origin of the variational principles and the intrinsic interrelations between them. For example, the Gibbs principles appear not as the rst principles of the theory of thermodynamic equilibrium but as a consequence of the Einstein formula for thermodynamic uctuations. The mathematical issues are considered as long as they shed light on the physical outcomes and/or provide a useful technique for direct study of variational problems. Thebookisacompletelyrewrittenversionoftheauthor’smonographVariational Principles of Continuum Mechanics which appeared in Russian in 1983. I have been postponing the English translation because I wished to include the variational pr- ciples of irreversible processes in the new edition. Reaching an understanding of this subject took longer than I expected. In its nal form, this book covers all aspects of the story. The part concerned with irreversible processes is tiny, but it determines the accents put on all the results presented. The other new issues included in the book are: entropy of microstructure, variational principles of vortex line dynamics, va- ational principles and integration in functional spaces, some stochastic variational problems, variational principle for probability densities of local elds in composites with random structure, variational theory of turbulence; these topics have not been covered previously in monographic literature.