Download or read book Introduction to the Theory and Application of the Laplace Transformation written by Gustav Doetsch and published by Springer. This book was released on 1974 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: In anglo-american literature there exist numerous books, devoted to the application of the Laplace transformation in technical domains such as electrotechnics, mechanics etc. Chiefly, they treat problems which, in mathematical language, are governed by ordi nary and partial differential equations, in various physically dressed forms. The theoretical foundations of the Laplace transformation are presented usually only in a simplified manner, presuming special properties with respect to the transformed func tions, which allow easy proofs. By contrast, the present book intends principally to develop those parts of the theory of the Laplace transformation, which are needed by mathematicians, physicists a,nd engineers in their daily routine work, but in complete generality and with detailed, exact proofs. The applications to other mathematical domains and to technical prob lems are inserted, when the theory is adequately· developed to present the tools necessary for their treatment. Since the book proceeds, not in a rigorously systematic manner, but rather from easier to more difficult topics, it is suited to be read from the beginning as a textbook, when one wishes to familiarize oneself for the first time with the Laplace transforma tion. For those who are interested only in particular details, all results are specified in "Theorems" with explicitly formulated assumptions and assertions. Chapters 1-14 treat the question of convergence and the mapping properties of the Laplace transformation. The interpretation of the transformation as the mapping of one function space to another (original and image functions) constitutes the dom inating idea of all subsequent considerations.
Download or read book The Laplace Transform written by Joel L. Schiff and published by . This book was released on 2014-01-15 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction to the Theory and Application of the Laplace Transformation written by G. Doetsch and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: In anglo-american literature there exist numerous books, devoted to the application of the Laplace transformation in technical domains such as electrotechnics, mechanics etc. Chiefly, they treat problems which, in mathematical language, are governed by ordi nary and partial differential equations, in various physically dressed forms. The theoretical foundations of the Laplace transformation are presented usually only in a simplified manner, presuming special properties with respect to the transformed func tions, which allow easy proofs. By contrast, the present book intends principally to develop those parts of the theory of the Laplace transformation, which are needed by mathematicians, physicists a,nd engineers in their daily routine work, but in complete generality and with detailed, exact proofs. The applications to other mathematical domains and to technical prob lems are inserted, when the theory is adequately· developed to present the tools necessary for their treatment. Since the book proceeds, not in a rigorously systematic manner, but rather from easier to more difficult topics, it is suited to be read from the beginning as a textbook, when one wishes to familiarize oneself for the first time with the Laplace transforma tion. For those who are interested only in particular details, all results are specified in "Theorems" with explicitly formulated assumptions and assertions. Chapters 1-14 treat the question of convergence and the mapping properties of the Laplace transformation. The interpretation of the transformation as the mapping of one function space to another (original and image functions) constitutes the dom inating idea of all subsequent considerations.
Download or read book Applied Engineering Analysis written by Tai-Ran Hsu and published by John Wiley & Sons. This book was released on 2018-04-30 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: A resource book applying mathematics to solve engineering problems Applied Engineering Analysis is a concise textbookwhich demonstrates how toapply mathematics to solve engineering problems. It begins with an overview of engineering analysis and an introduction to mathematical modeling, followed by vector calculus, matrices and linear algebra, and applications of first and second order differential equations. Fourier series and Laplace transform are also covered, along with partial differential equations, numerical solutions to nonlinear and differential equations and an introduction to finite element analysis. The book also covers statistics with applications to design and statistical process controls. Drawing on the author's extensive industry and teaching experience, spanning 40 years, the book takes a pedagogical approach and includes examples, case studies and end of chapter problems. It is also accompanied by a website hosting a solutions manual and PowerPoint slides for instructors. Key features: Strong emphasis on deriving equations, not just solving given equations, for the solution of engineering problems. Examples and problems of a practical nature with illustrations to enhance student’s self-learning. Numerical methods and techniques, including finite element analysis. Includes coverage of statistical methods for probabilistic design analysis of structures and statistical process control (SPC). Applied Engineering Analysis is a resource book for engineering students and professionals to learn how to apply the mathematics experience and skills that they have already acquired to their engineering profession for innovation, problem solving, and decision making.
Download or read book Introduction to the Laplace Transform written by Peter K.F. Kuhfittig and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to give an introduction to the Laplace transform on the undergraduate level. The material is drawn from notes for a course taught by the author at the Milwaukee School of Engineering. Based on classroom experience, an attempt has been made to (1) keep the proofs short, (2) introduce applications as soon as possible, (3) concentrate on problems that are difficult to handle by the older classical methods, and (4) emphasize periodic phenomena. To make it possible to offer the course early in the curriculum (after differential equations), no knowledge of complex variable theory is assumed. However, since a thorough study of Laplace. transforms requires at least the rudiments of this theory, Chapter 3 includes a brief sketch of complex variables, with many of the details presented in Appendix A. This plan permits an introduction of the complex inversion formula, followed by additional applications. The author has found that a course taught three hours a week for a quarter can be based on the material in Chapters 1, 2, and 5 and the first three sections of Chapter 7. If additional time is available (e.g., four quarter-hours or three semester-hours), the whole book can be covered easily. The author is indebted to the students at the Milwaukee School of Engineering for their many helpful comments and criticisms.
Download or read book Laplace Transforms and Their Applications to Differential Equations written by N.W. McLachlan and published by Courier Corporation. This book was released on 2014-08-20 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classic graduate-level exposition covers theory and applications to ordinary and partial differential equations. Includes derivation of Laplace transforms of various functions, Laplace transform for a finite interval, and more. 1948 edition.
Download or read book An Introduction to Complex Analysis and the Laplace Transform written by Vladimir Eiderman and published by CRC Press. This book was released on 2021-12-20 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this comparatively short textbook is a sufficiently full exposition of the fundamentals of the theory of functions of a complex variable to prepare the student for various applications. Several important applications in physics and engineering are considered in the book. This thorough presentation includes all theorems (with a few exceptions) presented with proofs. No previous exposure to complex numbers is assumed. The textbook can be used in one-semester or two-semester courses. In one respect this book is larger than usual, namely in the number of detailed solutions of typical problems. This, together with various problems, makes the book useful both for self- study and for the instructor as well. A specific point of the book is the inclusion of the Laplace transform. These two topics are closely related. Concepts in complex analysis are needed to formulate and prove basic theorems in Laplace transforms, such as the inverse Laplace transform formula. Methods of complex analysis provide solutions for problems involving Laplace transforms. Complex numbers lend clarity and completion to some areas of classical analysis. These numbers found important applications not only in the mathematical theory, but in the mathematical descriptions of processes in physics and engineering.
Download or read book Applied Laplace Transforms and z Transforms for Scientists and Engineers written by Urs Graf and published by Birkhäuser. This book was released on 2012-12-06 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of Laplace transformation is an important part of the mathematical background required for engineers, physicists and mathematicians. Laplace transformation methods provide easy and effective techniques for solving many problems arising in various fields of science and engineering, especially for solving differential equations. What the Laplace transformation does in the field of differential equations, the z-transformation achieves for difference equations. The two theories are parallel and have many analogies. Laplace and z transformations are also referred to as operational calculus, but this notion is also used in a more restricted sense to denote the operational calculus of Mikusinski. This book does not use the operational calculus of Mikusinski, whose approach is based on abstract algebra and is not readily accessible to engineers and scientists. The symbolic computation capability of Mathematica can now be used in favor of the Laplace and z-transformations. The first version of the Mathematica Package LaplaceAndzTransforrns developed by the author appeared ten years ago. The Package computes not only Laplace and z-transforms but also includes many routines from various domains of applications. Upon loading the Package, about one hundred and fifty new commands are added to the built-in commands of Mathematica. The code is placed in front of the already built-in code of Laplace and z-transformations of Mathematica so that built-in functions not covered by the Package remain available. The Package substantially enhances the Laplace and z-transformation facilities of Mathematica. The book is mainly designed for readers working in the field of applications.
Download or read book Laplace Transform PMS 6 written by David Vernon Widder and published by Princeton University Press. This book was released on 2015-12-08 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Book 6 in the Princeton Mathematical Series. Originally published in 1941. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Download or read book An Introduction to Laplace Transforms and Fourier Series written by P.P.G. Dyke and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to Laplace transforms and Fourier series is aimed at second year students in applied mathematics. It is unusual in treating Laplace transforms at a relatively simple level with many examples. Mathematics students do not usually meet this material until later in their degree course but applied mathematicians and engineers need an early introduction. Suitable as a course text, it will also be of interest to physicists and engineers as supplementary material.
Download or read book Distribution Theory and Transform Analysis written by A.H. Zemanian and published by Courier Corporation. This book was released on 2011-11-30 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distribution theory, a relatively recent mathematical approach to classical Fourier analysis, not only opened up new areas of research but also helped promote the development of such mathematical disciplines as ordinary and partial differential equations, operational calculus, transformation theory, and functional analysis. This text was one of the first to give a clear explanation of distribution theory; it combines the theory effectively with extensive practical applications to science and engineering problems. Based on a graduate course given at the State University of New York at Stony Brook, this book has two objectives: to provide a comparatively elementary introduction to distribution theory and to describe the generalized Fourier and Laplace transformations and their applications to integrodifferential equations, difference equations, and passive systems. After an introductory chapter defining distributions and the operations that apply to them, Chapter 2 considers the calculus of distributions, especially limits, differentiation, integrations, and the interchange of limiting processes. Some deeper properties of distributions, such as their local character as derivatives of continuous functions, are given in Chapter 3. Chapter 4 introduces the distributions of slow growth, which arise naturally in the generalization of the Fourier transformation. Chapters 5 and 6 cover the convolution process and its use in representing differential and difference equations. The distributional Fourier and Laplace transformations are developed in Chapters 7 and 8, and the latter transformation is applied in Chapter 9 to obtain an operational calculus for the solution of differential and difference equations of the initial-condition type. Some of the previous theory is applied in Chapter 10 to a discussion of the fundamental properties of certain physical systems, while Chapter 11 ends the book with a consideration of periodic distributions. Suitable for a graduate course for engineering and science students or for a senior-level undergraduate course for mathematics majors, this book presumes a knowledge of advanced calculus and the standard theorems on the interchange of limit processes. A broad spectrum of problems has been included to satisfy the diverse needs of various types of students.
Download or read book Table of Integrals Series and Products written by Daniel Zwillinger and published by Elsevier. This book was released on 2007-02-23 with total page 1220 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Table of Integrals, Series, and Products is the essential reference for integrals in the English language. Mathematicians, scientists, and engineers, rely on it when identifying and subsequently solving extremely complex problems. Since publication of the first English-language edition in 1965, it has been thoroughly revised and enlarged on a regular basis, with substantial additions and, where necessary, existing entries corrected or revised. The seventh edition includes a fully searchable CD-Rom.- Fully searchable CD that puts information at your fingertips included with text- Most up to date listing of integrals, series andproducts - Provides accuracy and efficiency in work
Download or read book Laplace Transforms and Their Applications written by Alexander Apelblat and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a lot of literature devoted to operational calculus, which includes the analysis of properties and rules of integral transformations and illustrates their usefulness in different fields of applied mathematics, engineering and natural sciences. The integral transform technique is one of most useful tools of applied mathematics employed in many branches of science and engineering. Typical applications include the design and analysis of transient and steady-state configurations of linear systems in electrical, mechanical and control engineering, and heat transfer, diffusion, waves, vibrations and fluid motion problems. The Laplace transformation receives special attention in literature because of its importance in various applications and therefore is considered as a standard technique in solving linear differential equations. For this reason, this book is centered on the Laplace transformation. (Imprint: Nova)
Download or read book Vector valued Laplace Transforms and Cauchy Problems written by Wolfgang Arendt and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear evolution equations in Banach spaces have seen important developments in the last two decades. This is due to the many different applications in the theory of partial differential equations, probability theory, mathematical physics, and other areas, and also to the development of new techniques. One important technique is given by the Laplace transform. It played an important role in the early development of semigroup theory, as can be seen in the pioneering monograph by Rille and Phillips [HP57]. But many new results and concepts have come from Laplace transform techniques in the last 15 years. In contrast to the classical theory, one particular feature of this method is that functions with values in a Banach space have to be considered. The aim of this book is to present the theory of linear evolution equations in a systematic way by using the methods of vector-valued Laplace transforms. It is simple to describe the basic idea relating these two subjects. Let A be a closed linear operator on a Banach space X. The Cauchy problern defined by A is the initial value problern (t 2 0), (CP) {u'(t) = Au(t) u(O) = x, where x E X is a given initial value. If u is an exponentially bounded, continuous function, then we may consider the Laplace transform 00 u(>. ) = 1 e-). . tu(t) dt of u for large real>. .
Download or read book Introduction to the Theory and Application of the Laplace Transformation written by Gustav Doetsch and published by . This book was released on 1970 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Engineering Applications of the Laplace Transform written by Y.H. Gangadharaiah and published by Cambridge Scholars Publishing. This book was released on 2021-08-25 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to one of the most critical areas of applied mathematics, namely the Laplace transform technique for linear time invariance systems arising from the fields of electrical and mechanical engineering. It focuses on introducing Laplace transformation and its operating properties, finding inverse Laplace transformation through different methods, and describing transfer function applications for mechanical and electrical networks to develop input and output relationships. It also discusses solutions of initial value problems, the state-variables approach, and the solution of boundary value problems connected with partial differential equations.
Download or read book The Laplace Transform written by Richard Bellman and published by World Scientific. This book was released on 1984 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical theory of the Laplace Transform can open many new avenues when viewed from a modern, semi-classical point of view. In this book, the author re-examines the Laplace Transform and presents a study of many of the applications to differential equations, differential-difference equations and the renewal equation.