EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Introduction to the Language of Mathematics

Download or read book An Introduction to the Language of Mathematics written by Frédéric Mynard and published by Springer. This book was released on 2018-11-24 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook for an undergraduate mathematics major transition course from technique-based mathematics (such as Algebra and Calculus) to proof-based mathematics. It motivates the introduction of the formal language of logic and set theory and develops the basics with examples, exercises with solutions and exercises without. It then moves to a discussion of proof structure and basic proof techniques, including proofs by induction with extensive examples. An in-depth treatment of relations, particularly equivalence and order relations completes the exposition of the basic language of mathematics. The last chapter treats infinite cardinalities. An appendix gives some complement on induction and order, and another provides full solutions of the in-text exercises. The primary audience is undergraduate mathematics major, but independent readers interested in mathematics can also use the book for self-study.

Book The Mathematics of Language

Download or read book The Mathematics of Language written by Marcus Kracht and published by Walter de Gruyter. This book was released on 2003 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Table of contents

Book Language and Mathematics Education

Download or read book Language and Mathematics Education written by Judit N. Moschkovich and published by Information Age Pub Incorporated. This book was released on 2010 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: A volume in Research in Mathematics Education Series Editor Barbara J. Dougherty, Iowa State University Marketing description: Issues of language in mathematics learning and teaching are important for both practical and theoretical reasons. Addressing issues of language is crucial for improving mathematics learning and teaching for students who are bilingual, multilingual, or learning English. These issues are also relevant to theory: studies that make language visible provide a complex perspective of the role of language in reasoning and learning mathematics. What is the relevant knowledge base to consider when designing research studies that address issues of language in the learning and teaching of mathematics? What scholarly literature is relevant and can contribute to research? In order to address issues of language in mathematics education, researchers need to use theoretical perspectives that integrate current views of mathematics learning and teaching with current views on language, discourse, bilingualism, and second language acquisition. This volume contributes to the development of such integrated approaches to research on language issues in mathematics education by describing theoretical perspectives for framing the study of language issues and methodological issues to consider when designing research studies. The volume provides interdisciplinary reviews of the research literature from four very different perspectives: mathematics education (Moschkovich), Cultural-Historical-Activity Theory (Gutierrez, Sengupta-Irving, & Dieckmann), systemic functional linguistics (Schleppegrell), and assessment (Solano-Flores). This volume offers graduate students and researchers new to the study of language in mathematics education an introduction to resources for conceptualizing, framing, and designing research studies. For those already involved in examining language issues, the volume provides useful and critical reviews of the literature as well as recommendations for moving forward in designing research. Lastly, the volume provides a basis for dialogue across multiple research communities engaged in collaborative work to address these pressing issues.

Book Introduction to the Mathematics of Language Study

Download or read book Introduction to the Mathematics of Language Study written by Barron Brainerd and published by . This book was released on 1971 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematics Education and Language Diversity

Download or read book Mathematics Education and Language Diversity written by Richard Barwell and published by Springer. This book was released on 2015-11-25 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: *THIS BOOK WILL SOON BECOME AVAILABLE AS OPEN ACCESS BOOK* This book examines multiple facets of language diversity and mathematics education. It features renowned authors from around the world and explores the learning and teaching of mathematics in contexts that include multilingual classrooms, indigenous education, teacher education, blind and deaf learners, new media and tertiary education. Each chapter draws on research from two or more countries to illustrate important research findings, theoretical developments and practical strategies. This open access book examines multiple facets of language diversity

Book Introduction to Cultural Mathematics

Download or read book Introduction to Cultural Mathematics written by Thomas E. Gilsdorf and published by John Wiley & Sons. This book was released on 2012-04-17 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: INTRODUCTION TO CULTURAL MATHEMATICS Challenges readers to think creatively about mathematics and ponder its role in their own daily lives Cultural mathematics, or ethnomathematics as it is also known, studies the relationship between mathematics and culture—with the ultimate goal of contributing to an appreciation of the connection between the two. Introduction to Cultural Mathematics: With Case Studies in the Otomies and Incas integrates both theoretical and applied aspects of the topic, promotes discussions on the development of mathematical concepts, and provides a comprehensive reference for teaching and learning about multicultural mathematical practices. This illuminating book provides a nontraditional, evidence-based approach to mathematics that promotes diversity and respect for cultural heritages. Part One covers such major concepts as cultural aspects of mathematics, numeration and number symbols, kinship relations, art and decoration, games, divination, and calendars. Part Two takes those concepts and applies them to fascinating case studies of both the Otomies of Central Mexico and the Incas of South America. Throughout the book, numerous illustrations, examples, and motivational questions promote an interactive understanding of the topic. Each chapter begins with questions that encourage a cooperative, inquiry-based approach to learning and concludes with a series of exercises that allow readers to test their understanding of the presented material. Introduction to Cultural Mathematics is an ideal book for courses on cultural mathematics, the history of mathematics, and cultural studies. The book is also a valuable resource and reference for anyone interested in the connections between mathematics, culture, anthropology, and history.

Book An Elementary Introduction to the Wolfram Language

Download or read book An Elementary Introduction to the Wolfram Language written by Stephen Wolfram and published by Wolfram Research, Incorporated. This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Wolfram Language represents a major advance in programming languages that makes leading-edge computation accessible to everyone. Unique in its approach of building in vast knowledge and automation, the Wolfram Language scales from a single line of easy-to-understand interactive code to million-line production systems. This book provides an elementary introduction to the Wolfram Language and modern computational thinking. It assumes no prior knowledge of programming, and is suitable for both technical and non-technical college and high-school students, as well as anyone with an interest in the latest technology and its practical application.

Book Introduction to Mathematical Thinking

Download or read book Introduction to Mathematical Thinking written by Keith J. Devlin and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Mathematical thinking is not the same as 'doing math'--unless you are a professional mathematician. For most people, 'doing math' means the application of procedures and symbolic manipulations. Mathematical thinking, in contrast, is what the name reflects, a way of thinking about things in the world that humans have developed over three thousand years. It does not have to be about mathematics at all, which means that many people can benefit from learning this powerful way of thinking, not just mathematicians and scientists."--Back cover.

Book Mathematical Methods in Linguistics

Download or read book Mathematical Methods in Linguistics written by Barbara B.H. Partee and published by Springer Science & Business Media. This book was released on 1990-04-30 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary set theory accustoms the students to mathematical abstraction, includes the standard constructions of relations, functions, and orderings, and leads to a discussion of the various orders of infinity. The material on logic covers not only the standard statement logic and first-order predicate logic but includes an introduction to formal systems, axiomatization, and model theory. The section on algebra is presented with an emphasis on lattices as well as Boolean and Heyting algebras. Background for recent research in natural language semantics includes sections on lambda-abstraction and generalized quantifiers. Chapters on automata theory and formal languages contain a discussion of languages between context-free and context-sensitive and form the background for much current work in syntactic theory and computational linguistics. The many exercises not only reinforce basic skills but offer an entry to linguistic applications of mathematical concepts. For upper-level undergraduate students and graduate students in theoretical linguistics, computer-science students with interests in computational linguistics, logic programming and artificial intelligence, mathematicians and logicians with interests in linguistics and the semantics of natural language.

Book Mathematics for Machine Learning

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Book An Introduction to Measure Theory

Download or read book An Introduction to Measure Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2021-09-03 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

Book Teaching Numeracy

    Book Details:
  • Author : Margie Pearse
  • Publisher : Corwin Press
  • Release : 2011-03-23
  • ISBN : 1452224404
  • Pages : 241 pages

Download or read book Teaching Numeracy written by Margie Pearse and published by Corwin Press. This book was released on 2011-03-23 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transform mathematics learning from “doing” to “thinking” American students are losing ground in the global mathematical environment. What many of them lack is numeracy—the ability to think through the math and apply it outside of the classroom. Referencing the new common core and NCTM standards, the authors outline nine critical thinking habits that foster numeracy and show you how to: Monitor and repair students’ understanding Guide students to recognize patterns Encourage questioning for understanding Develop students’ mathematics vocabulary Included are several numeracy-rich lesson plans, complete with clear directions and student handouts.

Book An Introduction to Nonlinear Analysis

Download or read book An Introduction to Nonlinear Analysis written by Martin Schechter and published by Cambridge University Press. This book was released on 2004 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: The techniques that can be used to solve non-linear problems are far different than those that are used to solve linear problems. Many courses in analysis and applied mathematics attack linear cases simply because they are easier to solve and do not require a large theoretical background in order to approach them. Professor Schechter's 2005 book is devoted to non-linear methods using the least background material possible and the simplest linear techniques. An understanding of the tools for solving non-linear problems is developed whilst demonstrating their application to problems in one dimension and then leading to higher dimensions. The reader is guided using simple exposition and proof, assuming a minimal set of pre-requisites. For completion, a set of appendices covering essential basics in functional analysis and metric spaces is included, making this ideal as an accompanying text on an upper-undergraduate or graduate course, or even for self-study.

Book An Introduction to Mathematics

Download or read book An Introduction to Mathematics written by Alfred North Whitehead and published by Courier Dover Publications. This book was released on 2017-05-04 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise volume for general students by prominent philosopher and mathematician explains what math is and does, and how mathematicians do it. "Lucid and cogent ... should delight you." — The New York Times. 1911 edition.

Book Introduction to Mathematical Logic

Download or read book Introduction to Mathematical Logic written by Elliot Mendelsohn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.

Book Discrete Mathematics

    Book Details:
  • Author : Oscar Levin
  • Publisher : Createspace Independent Publishing Platform
  • Release : 2016-08-16
  • ISBN : 9781534970748
  • Pages : 342 pages

Download or read book Discrete Mathematics written by Oscar Levin and published by Createspace Independent Publishing Platform. This book was released on 2016-08-16 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.

Book A Programmer s Introduction to Mathematics

Download or read book A Programmer s Introduction to Mathematics written by Jeremy Kun and published by . This book was released on 2020-05-17 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Programmer's Introduction to Mathematics uses your familiarity with ideas from programming and software to teach mathematics. You'll learn about the central objects and theorems of mathematics, including graphs, calculus, linear algebra, eigenvalues, optimization, and more. You'll also be immersed in the often unspoken cultural attitudes of mathematics, learning both how to read and write proofs while understanding why mathematics is the way it is. Between each technical chapter is an essay describing a different aspect of mathematical culture, and discussions of the insights and meta-insights that constitute mathematical intuition. As you learn, we'll use new mathematical ideas to create wondrous programs, from cryptographic schemes to neural networks to hyperbolic tessellations. Each chapter also contains a set of exercises that have you actively explore mathematical topics on your own. In short, this book will teach you to engage with mathematics. A Programmer's Introduction to Mathematics is written by Jeremy Kun, who has been writing about math and programming for 10 years on his blog "Math Intersect Programming." As of 2020, he works in datacenter optimization at Google.The second edition includes revisions to most chapters, some reorganized content and rewritten proofs, and the addition of three appendices.