EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Introduction to the Mathematical Structure of Quantum Mechanics

Download or read book An Introduction to the Mathematical Structure of Quantum Mechanics written by F. Strocchi and published by World Scientific. This book was released on 2008 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Arising out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students, this book formulates the mathematical structure of QM in terms of the C*-algebra of observables, which is argued on the basis of the operational definition of measurements and the duality between states and observables.

Book Introduction To The Mathematical Structure Of Quantum Mechanics  An  A Short Course For Mathematicians

Download or read book Introduction To The Mathematical Structure Of Quantum Mechanics An A Short Course For Mathematicians written by Franco Strocchi and published by World Scientific Publishing Company. This book was released on 2005-11-17 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book arises out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students. Rather than starting from the Dirac-Von Neumann axioms, the book offers a short presentation of the mathematical structure of QM using the C--algebraic structure of the observable based on the operational definition of measurements and the duality between states and observables. The description of states and observables as Hilbert space vectors and operators is then derived from the GNS and Gelfand-Naimark Theorems.For finite degrees of freedom, the Weyl algebra codifies the experimental limitations on the measurements of position and momentum (Heisenberg uncertainty relations) and Schroedinger QM follows from the von Neumann uniqueness theorem.The existence problem of the dynamics is related to the self-adjointness of the differential operator describing the Hamiltonian and solved by the Rellich-Kato theorems. Examples are discussed which include the explanation of the discreteness of the atomic spectra.Because of the increasing interest in the relation between QM and stochastic processes, a final chapter is devoted to the functional integral approach (Feynman-Kac formula), the formulation in terms of ground state correlations (Wightman functions) and their analytic continuation to imaginary time (Euclidean QM). The quantum particle on a circle as an example of the interplay between topology and functional integral is also discussed in detail.

Book Quantum Theory for Mathematicians

Download or read book Quantum Theory for Mathematicians written by Brian C. Hall and published by Springer Science & Business Media. This book was released on 2013-06-19 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.

Book Physics for Mathematicians

Download or read book Physics for Mathematicians written by Michael Spivak and published by . This book was released on 2010 with total page 733 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantum Mechanics for Mathematicians

Download or read book Quantum Mechanics for Mathematicians written by Leon Armenovich Takhtadzhi͡an and published by American Mathematical Soc.. This book was released on 2008 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.

Book An Introduction to the Mathematical Structure of Quantum Mechanics

Download or read book An Introduction to the Mathematical Structure of Quantum Mechanics written by Franco Strocchi and published by . This book was released on 2008 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantum Theory  Groups and Representations

Download or read book Quantum Theory Groups and Representations written by Peter Woit and published by Springer. This book was released on 2017-11-01 with total page 659 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.

Book Mathematical Methods of Classical Mechanics

Download or read book Mathematical Methods of Classical Mechanics written by V.I. Arnol'd and published by Springer Science & Business Media. This book was released on 2013-04-09 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.

Book A Mathematical Introduction to Electronic Structure Theory

Download or read book A Mathematical Introduction to Electronic Structure Theory written by Lin Lin and published by SIAM. This book was released on 2019-06-05 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on first principle quantum mechanics, electronic structure theory is widely used in physics, chemistry, materials science, and related fields and has recently received increasing research attention in applied and computational mathematics. This book provides a self-contained, mathematically oriented introduction to the subject and its associated algorithms and analysis. It will help applied mathematics students and researchers with minimal background in physics understand the basics of electronic structure theory and prepare them to conduct research in this area. The book begins with an elementary introduction of quantum mechanics, including the uncertainty principle and the Hartree?Fock theory, which is considered the starting point of modern electronic structure theory. The authors then provide an in-depth discussion of two carefully selected topics that are directly related to several aspects of modern electronic structure calculations: density matrix based algorithms and linear response theory. Chapter 2 introduces the Kohn?Sham density functional theory with a focus on the density matrix based numerical algorithms, and Chapter 3 introduces linear response theory, which provides a unified viewpoint of several important phenomena in physics and numerics. An understanding of these topics will prepare readers for more advanced topics in this field. The book concludes with the random phase approximation to the correlation energy. The book is written for advanced undergraduate and beginning graduate students, specifically those with mathematical backgrounds but without a priori knowledge of quantum mechanics, and can be used for self-study by researchers, instructors, and other scientists. The book can also serve as a starting point to learn about many-body perturbation theory, a topic at the frontier of the study of interacting electrons.

Book Quantum Fields and Strings  A Course for Mathematicians

Download or read book Quantum Fields and Strings A Course for Mathematicians written by Pierre Deligne and published by American Mathematical Society. This book was released on 1999-10-25 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: A run-away bestseller from the moment it hit the market in late 1999. This impressive, thick softcover offers mathematicians and mathematical physicists the opportunity to learn about the beautiful and difficult subjects of quantum field theory and string theory. Cover features an intriguing cartoon that will bring a smile to its intended audience.

Book Mathematical Methods in Quantum Mechanics

Download or read book Mathematical Methods in Quantum Mechanics written by Gerald Teschl and published by American Mathematical Soc.. This book was released on 2009 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).

Book Mathematics of Classical and Quantum Physics

Download or read book Mathematics of Classical and Quantum Physics written by Frederick W. Byron and published by Courier Corporation. This book was released on 2012-04-26 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.

Book Introduction to the Structure of Matter

Download or read book Introduction to the Structure of Matter written by John J. Brehm and published by . This book was released on 1989-01-17 with total page 972 pages. Available in PDF, EPUB and Kindle. Book excerpt: A first course in two of the 20th century's most exciting contributions to physics: special relativity and quantum theory. Historical material is incorporated into the exposition. Coverage is broad and deep, offering the instructor flexibility in presentation. Nearly every section contains at least one illustrative example (with all calculations), and each chapter has a wide selection of problems. Topics covered include relativistic dynamics, quantum mechanics, parity, quantum statistical physics, the nuclear shell model, fission, fusion, color and the strong interaction, gauge symmetries, and grand unification.

Book Quantum Mechanics for Scientists and Engineers

Download or read book Quantum Mechanics for Scientists and Engineers written by David A. B. Miller and published by Cambridge University Press. This book was released on 2008-04-21 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you need a book that relates the core principles of quantum mechanics to modern applications in engineering, physics, and nanotechnology, this is it. Students will appreciate the book's applied emphasis, which illustrates theoretical concepts with examples of nanostructured materials, optics, and semiconductor devices. The many worked examples and more than 160 homework problems help students to problem solve and to practise applications of theory. Without assuming a prior knowledge of high-level physics or classical mechanics, the text introduces Schrödinger's equation, operators, and approximation methods. Systems, including the hydrogen atom and crystalline materials, are analyzed in detail. More advanced subjects, such as density matrices, quantum optics, and quantum information, are also covered. Practical applications and algorithms for the computational analysis of simple structures make this an ideal introduction to quantum mechanics for students of engineering, physics, nanotechnology, and other disciplines. Additional resources available from www.cambridge.org/9780521897839.

Book Quantum Mechanics in Simple Matrix Form

Download or read book Quantum Mechanics in Simple Matrix Form written by Thomas F. Jordan and published by Courier Corporation. This book was released on 2012-05-23 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this text, basic quantum mechanics becomes accessible to undergraduates with no background in mathematics beyond algebra. Includes more than 100 problems and 38 figures. 1986 edition.

Book Mathematical Structures Of Quantum Mechanics

Download or read book Mathematical Structures Of Quantum Mechanics written by Kow Lung Chang and published by World Scientific Publishing Company. This book was released on 2011-10-31 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This marvelous book is aimed at strengthening the mathematical background and sharpening the mathematical tools of students without rigorous training before taking the quantum mechanics course. The abstract construction of quantum postulates in the framework of Hilbert space and Hermitian operators are realized by q-representation in the formulation to demonstrate the conventional approach to quantum theory.Symmetry property is emphasized and extensively explored in this book both in continuous transformations as well as in the discrete ones. The space-time structure is discussed in depth and Dirac equation is formulated by symmetry consideration of Lorentz group.

Book Introduction to Quantum Mechanics with Applications to Chemistry

Download or read book Introduction to Quantum Mechanics with Applications to Chemistry written by Linus Pauling and published by Courier Corporation. This book was released on 2012-06-08 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classic undergraduate text explores wave functions for the hydrogen atom, perturbation theory, the Pauli exclusion principle, and the structure of simple and complex molecules. Numerous tables and figures.