Download or read book Introduction to Mining Business Projects 2nd Edition written by Roger Rumbu and published by Lulu.com. This book was released on 2018-03-17 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mining operations are the key elements in this time of technical changes and development. Transport, housing, different infrastructures are requiring more and more mining resources. the release of a new smartphone or tablet, the top self-driven electrical, the rocket program are all felt in the womb of the earth somewhere in all continents and very soon in the moon. Even a new secured banking note or a pacemaker have their roots in the mines. Mining resources have not been all evaluated, many are estimated explaining why since the man as started digging, many resources are still available leading more and more people investing in mining operations to fill the needs of this world in perpetual development. This introduction to Mining Business Projects is a tool, a must have to help potential junior miners to make the right path in the ventures of mining operations. Mining operation is a tremendous story to share, please go for it. Roger Rumbu, Met. Eng., PPM, TBOM.
Download or read book Applied Data Mining for Business and Industry written by Paolo Giudici and published by John Wiley & Sons. This book was released on 2009-04-15 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing availability of data in our current, information overloaded society has led to the need for valid tools for its modelling and analysis. Data mining and applied statistical methods are the appropriate tools to extract knowledge from such data. This book provides an accessible introduction to data mining methods in a consistent and application oriented statistical framework, using case studies drawn from real industry projects and highlighting the use of data mining methods in a variety of business applications. Introduces data mining methods and applications. Covers classical and Bayesian multivariate statistical methodology as well as machine learning and computational data mining methods. Includes many recent developments such as association and sequence rules, graphical Markov models, lifetime value modelling, credit risk, operational risk and web mining. Features detailed case studies based on applied projects within industry. Incorporates discussion of data mining software, with case studies analysed using R. Is accessible to anyone with a basic knowledge of statistics or data analysis. Includes an extensive bibliography and pointers to further reading within the text. Applied Data Mining for Business and Industry, 2nd edition is aimed at advanced undergraduate and graduate students of data mining, applied statistics, database management, computer science and economics. The case studies will provide guidance to professionals working in industry on projects involving large volumes of data, such as customer relationship management, web design, risk management, marketing, economics and finance.
Download or read book Project Management for Mining 2nd Edition written by Robin J. Hickson and published by Society for Mining, Metallurgy & Exploration. This book was released on 2022-02-01 with total page 782 pages. Available in PDF, EPUB and Kindle. Book excerpt: Before You Put the First Shovel in the Ground—This Book Could Be the Difference Between a Successful Mining Operation and a Money Pit Opening a successful new mine is a vastly complex undertaking, entailing several years and millions to billions of dollars. In today’s world, when environmental and labor policies, regulatory compliance, and the impact of the community must be factored in, you cannot afford to make a mistake. The Society for Mining, Metallurgy & Exploration has created this road map for you. Written by two hands-on, in-the-trenches mining project managers with decades of experience bringing some of the world’s most successful, profitable mines into operation on time, within budget, and ethically, Project Management for Mining gives you step-by-step instructions in every process you are likely to encounter. It is in use as course material in universities in Australia, Canada, Colombia, Ghana, Iran, Kazakhstan, Peru, Russia, Saudi Arabia, South Africa, the United Kingdom, as well as the United States. In addition, more than 100 different mining companies have sent employees to attend seminars conducted by authors Robin Hickson and Terry Owen, sessions all based around the material within this book. In the years following the first edition, the authors gratefully received a bevy of excellent suggestions from some 2,000 readers in over 50 countries. This helpful reader feedback, coupled with written evaluations from the more than 400 seminar attendees, has been an unparalleled source of improvement for this new book. This second edition is a significant accomplishment that includes 5 new chapters, substantial updates to the original 34 chapters, and 56 new or updated figures, flowcharts, and checklists that every project manager can use.
Download or read book Data Mining written by Ian H. Witten and published by Elsevier. This book was released on 2011-02-03 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization
Download or read book Applied Data Mining written by Paolo Giudici and published by John Wiley & Sons. This book was released on 2005-09-27 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining can be defined as the process of selection, explorationand modelling of large databases, in order to discover models andpatterns. The increasing availability of data in the currentinformation society has led to the need for valid tools for itsmodelling and analysis. Data mining and applied statistical methodsare the appropriate tools to extract such knowledge from data.Applications occur in many different fields, including statistics,computer science, machine learning, economics, marketing andfinance. This book is the first to describe applied data mining methodsin a consistent statistical framework, and then show how they canbe applied in practice. All the methods described are eithercomputational, or of a statistical modelling nature. Complexprobabilistic models and mathematical tools are not used, so thebook is accessible to a wide audience of students and industryprofessionals. The second half of the book consists of nine casestudies, taken from the author's own work in industry, thatdemonstrate how the methods described can be applied to realproblems. Provides a solid introduction to applied data mining methods ina consistent statistical framework Includes coverage of classical, multivariate and Bayesianstatistical methodology Includes many recent developments such as web mining,sequential Bayesian analysis and memory based reasoning Each statistical method described is illustrated with real lifeapplications Features a number of detailed case studies based on appliedprojects within industry Incorporates discussion on software used in data mining, withparticular emphasis on SAS Supported by a website featuring data sets, software andadditional material Includes an extensive bibliography and pointers to furtherreading within the text Author has many years experience teaching introductory andmultivariate statistics and data mining, and working on appliedprojects within industry A valuable resource for advanced undergraduate and graduatestudents of applied statistics, data mining, computer science andeconomics, as well as for professionals working in industry onprojects involving large volumes of data - such as in marketing orfinancial risk management.
Download or read book Data Mining written by Robert Groth and published by Prentice Hall. This book was released on 2000 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: PLEASE PROVIDE COURSE INFORMATION PLEASE PROVIDE
Download or read book Data Mining for Business Analytics written by Galit Shmueli and published by John Wiley & Sons. This book was released on 2019-10-14 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R
Download or read book The Business of Mining written by Odwyn Jones and published by CRC Press. This book was released on 2018-12-07 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Business of Mining complete set of three Focus books will provide readers with a holistic all-embracing appraisal of the analytical tools available for assessing the economic viability of prospective mines. Each volume has a discrete focus. This second volume discusses, in some depth, alternative means of assessing the economic viability of mining projects based on the best estimate of the recoverable mineral and/or fossil fuel reserves. The books were written primarily for undergraduate applied geologists, mining engineers and extractive metallurgists and those pursuing course-based postgraduate programs in mineral economics. However, the complete series will also be an extremely useful reference text for practicing mining professionals as well as for consultant geologists, mining engineers or primary metallurgists.
Download or read book Data Mining Concepts and Techniques written by Jiawei Han and published by Elsevier. This book was released on 2011-06-09 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
Download or read book Principles of Project Finance written by E. R. Yescombe and published by Academic Press. This book was released on 2013-11-13 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Second Edition of this best-selling introduction for practitioners uses new material and updates to describe the changing environment for project finance. Integrating recent developments in credit markets with revised insights into making project finance deals, the second edition offers a balanced view of project financing by combining legal, contractual, scheduling, and other subjects. Its emphasis on concepts and techniques makes it critical for those who want to succeed in financing large projects. With extensive cross-references and a comprehensive glossary, the Second Edition presents anew a guide to the principles and practical issues that can commonly cause difficulties in commercial and financial negotiations. - Provides a basic introduction to project finance and its relationship with other financing techniques - Describes and explains: sources of project finance; typical commercial contracts (e.g., for construction of the project and sale of its product or services) and their effects on project-finance structures; project-finance risk assessment from the points of view of lenders, investors, and other project parties; how lenders and investors evaluate the risks and returns on a project; the rôle of the public sector in public-private partnerships and other privately-financed infrastructure projects; how all these issues are dealt with in the financing agreements
Download or read book Introduction to Data Mining and Analytics written by Kris Jamsa and published by Jones & Bartlett Learning. This book was released on 2020-02-03 with total page 687 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining and Analytics provides a broad and interactive overview of a rapidly growing field. The exponentially increasing rate at which data is generated creates a corresponding need for professionals who can effectively handle its storage, analysis, and translation.
Download or read book Principles of Data Mining written by Max Bramer and published by Springer Science & Business Media. This book was released on 2007-03-06 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains the principal techniques of data mining: for classification, generation of association rules and clustering. It is written for readers without a strong background in mathematics or statistics and focuses on detailed examples and explanations of the algorithms given. This will benefit readers of all levels, from those who use data mining via commercial packages, right through to academic researchers. The book aims to help the general reader develop the necessary understanding to use commercial data mining packages, and to enable advanced readers to understand or contribute to future technical advances. Includes exercises and glossary.
Download or read book The Business of Mining written by Odwyn Jones and published by CRC Press. This book was released on 2019-03-04 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Business of Mining complete set of three Focus books will provide readers with a holistic all-embracing appraisal of the analytical tools available for assessing the economic viability of prospective mines. Each volume has a discrete focus. This first volume presents an overview of the mining business, followed by an analysis of project variables and risk, an overall coverage of the royalty agreements, pricing and contract systems followed by a final chapter on accounting standards and practises for the minerals industry. The books were written primarily for undergraduate applied geologists, mining engineers and extractive metallurgists and those pursuing course-based postgraduate programs in mineral economics. However, the complete series will also be an extremely useful reference text for practicing mining professionals as well as for consultant geologists, mining engineers or primary metallurgists.
Download or read book Introduction to Data Mining written by Pang-Ning Tan and published by . This book was released on 2018-04-13 with total page 864 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Data Mining presents fundamental concepts and algorithms for those learning data mining for the first time. Each concept is explored thoroughly and supported with numerous examples. The text requires only a modest background in mathematics. Each major topic is organized into two chapters, beginning with basic concepts that provide necessary background for understanding each data mining technique, followed by more advanced concepts and algorithms.
Download or read book Review on Copper Hydrometallurgy written by Roger Rumbu and published by Lulu.com. This book was released on 2019-02-19 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: The current technological challenges mean that engineers are expected to apply the available extraction in the field of extractive metallurgy.Extraction of copper, one of the most used metals, has been practiced since ancient times around the world.Three crucial steps, namely sulphide roasting, leaching of ores and concentrates, and electro-extraction through solvent extraction, are described here with ample details, diagrams, examples and explanations to enlighten practitioners. these techniques are widespread where copper ores are mined.These modes of extraction are applied in operations for many non-ferrous metals from where the interest of this book which enters in the collection of Extractive Metallurgy.Roger RUMBU, Met. Eng., PPM, TBOM.
Download or read book Data Mining written by Ian H. Witten and published by Elsevier. This book was released on 2005-07-13 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining, Second Edition, describes data mining techniques and shows how they work. The book is a major revision of the first edition that appeared in 1999. While the basic core remains the same, it has been updated to reflect the changes that have taken place over five years, and now has nearly double the references. The highlights of this new edition include thirty new technique sections; an enhanced Weka machine learning workbench, which now features an interactive interface; comprehensive information on neural networks; a new section on Bayesian networks; and much more. This text is designed for information systems practitioners, programmers, consultants, developers, information technology managers, specification writers as well as professors and students of graduate-level data mining and machine learning courses. - Algorithmic methods at the heart of successful data mining—including tried and true techniques as well as leading edge methods - Performance improvement techniques that work by transforming the input or output
Download or read book Process Mining in Healthcare written by Ronny S. Mans and published by Springer. This book was released on 2015-03-12 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: What are the possibilities for process mining in hospitals? In this book the authors provide an answer to this question by presenting a healthcare reference model that outlines all the different classes of data that are potentially available for process mining in healthcare and the relationships between them. Subsequently, based on this reference model, they explain the application opportunities for process mining in this domain and discuss the various kinds of analyses that can be performed. They focus on organizational healthcare processes rather than medical treatment processes. The combination of event data and process mining techniques allows them to analyze the operational processes within a hospital based on facts, thus providing a solid basis for managing and improving processes within hospitals. To this end, they also explicitly elaborate on data quality issues that are relevant for the data aspects of the healthcare reference model. This book mainly targets advanced professionals involved in areas related to business process management, business intelligence, data mining, and business process redesign for healthcare systems as well as graduate students specializing in healthcare information systems and process analysis.