EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Introduction to Mathematical Methods in Bioinformatics

Download or read book Introduction to Mathematical Methods in Bioinformatics written by Alexander Isaev and published by Springer Science & Business Media. This book was released on 2006-09-19 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book looks at the mathematical foundations of the models currently in use. All existing books on bioinformatics are software-orientated and they concentrate on computer implementations of mathematical models of biology. This book is unique in the sense that it looks at the mathematical foundations of the models, which are crucial for correct interpretation of the outputs of the models.

Book Mathematics of Bioinformatics

Download or read book Mathematics of Bioinformatics written by Matthew He and published by John Wiley & Sons. This book was released on 2011-03-16 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Bioinformatics: Theory, Methods, and Applications provides a comprehensive format for connecting and integrating information derived from mathematical methods and applying it to the understanding of biological sequences, structures, and networks. Each chapter is divided into a number of sections based on the bioinformatics topics and related mathematical theory and methods. Each topic of the section is comprised of the following three parts: an introduction to the biological problems in bioinformatics; a presentation of relevant topics of mathematical theory and methods to the bioinformatics problems introduced in the first part; an integrative overview that draws the connections and interfaces between bioinformatics problems/issues and mathematical theory/methods/applications.

Book Statistical Methods in Bioinformatics

Download or read book Statistical Methods in Bioinformatics written by Warren J. Ewens and published by Springer Science & Business Media. This book was released on 2005-09-30 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: "This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly." (Biometrics) "Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces." (Naturwissenschaften) "The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details." (Journal American Statistical Association) "The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book." (Metrika)

Book Mathematical Modeling in Systems Biology

Download or read book Mathematical Modeling in Systems Biology written by Brian P. Ingalls and published by MIT Press. This book was released on 2022-06-07 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the mathematical concepts and techniques needed for the construction and analysis of models in molecular systems biology. Systems techniques are integral to current research in molecular cell biology, and system-level investigations are often accompanied by mathematical models. These models serve as working hypotheses: they help us to understand and predict the behavior of complex systems. This book offers an introduction to mathematical concepts and techniques needed for the construction and interpretation of models in molecular systems biology. It is accessible to upper-level undergraduate or graduate students in life science or engineering who have some familiarity with calculus, and will be a useful reference for researchers at all levels. The first four chapters cover the basics of mathematical modeling in molecular systems biology. The last four chapters address specific biological domains, treating modeling of metabolic networks, of signal transduction pathways, of gene regulatory networks, and of electrophysiology and neuronal action potentials. Chapters 3–8 end with optional sections that address more specialized modeling topics. Exercises, solvable with pen-and-paper calculations, appear throughout the text to encourage interaction with the mathematical techniques. More involved end-of-chapter problem sets require computational software. Appendixes provide a review of basic concepts of molecular biology, additional mathematical background material, and tutorials for two computational software packages (XPPAUT and MATLAB) that can be used for model simulation and analysis.

Book Algebraic and Discrete Mathematical Methods for Modern Biology

Download or read book Algebraic and Discrete Mathematical Methods for Modern Biology written by Raina Robeva and published by Academic Press. This book was released on 2015-05-09 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by experts in both mathematics and biology, Algebraic and Discrete Mathematical Methods for Modern Biology offers a bridge between math and biology, providing a framework for simulating, analyzing, predicting, and modulating the behavior of complex biological systems. Each chapter begins with a question from modern biology, followed by the description of certain mathematical methods and theory appropriate in the search of answers. Every topic provides a fast-track pathway through the problem by presenting the biological foundation, covering the relevant mathematical theory, and highlighting connections between them. Many of the projects and exercises embedded in each chapter utilize specialized software, providing students with much-needed familiarity and experience with computing applications, critical components of the "modern biology" skill set. This book is appropriate for mathematics courses such as finite mathematics, discrete structures, linear algebra, abstract/modern algebra, graph theory, probability, bioinformatics, statistics, biostatistics, and modeling, as well as for biology courses such as genetics, cell and molecular biology, biochemistry, ecology, and evolution. - Examines significant questions in modern biology and their mathematical treatments - Presents important mathematical concepts and tools in the context of essential biology - Features material of interest to students in both mathematics and biology - Presents chapters in modular format so coverage need not follow the Table of Contents - Introduces projects appropriate for undergraduate research - Utilizes freely accessible software for visualization, simulation, and analysis in modern biology - Requires no calculus as a prerequisite - Provides a complete Solutions Manual - Features a companion website with supplementary resources

Book Introduction to Bioinformatics

Download or read book Introduction to Bioinformatics written by Anna Tramontano and published by CRC Press. This book was released on 2018-10-03 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Guiding readers from the elucidation and analysis of a genomic sequence to the prediction of a protein structure and the identification of the molecular function, Introduction to Bioinformatics describes the rationale and limitations of the bioinformatics methods and tools that can help solve biological problems. Requiring only a limited mathematical and statistical background, the book shows how to efficiently apply these approaches to biological data and evaluate the resulting information. The author, an expert bioinformatics researcher, first addresses the ways of storing and retrieving the enormous amount of biological data produced every day and the methods of decrypting the information encoded by a genome. She then covers the tools that can detect and exploit the evolutionary and functional relationships among biological elements. Subsequent chapters illustrate how to predict the three-dimensional structure of a protein. The book concludes with a discussion of the future of bioinformatics. Even though the future will undoubtedly offer new tools for tackling problems, most of the fundamental aspects of bioinformatics will not change. This resource provides the essential information to understand bioinformatics methods, ultimately facilitating in the solution of biological problems.

Book Mathematical Biology II

    Book Details:
  • Author : James D. Murray
  • Publisher : Springer Science & Business Media
  • Release : 2011-02-15
  • ISBN : 0387952284
  • Pages : 834 pages

Download or read book Mathematical Biology II written by James D. Murray and published by Springer Science & Business Media. This book was released on 2011-02-15 with total page 834 pages. Available in PDF, EPUB and Kindle. Book excerpt: This richly illustrated third edition provides a thorough training in practical mathematical biology and shows how exciting mathematical challenges can arise from a genuinely interdisciplinary involvement with the biosciences. It has been extensively updated and extended to cover much of the growth of mathematical biology. From the reviews: ""This book, a classical text in mathematical biology, cleverly combines mathematical tools with subject area sciences."--SHORT BOOK REVIEWS

Book Introduction to Computational Biology

Download or read book Introduction to Computational Biology written by Michael S. Waterman and published by CRC Press. This book was released on 2018-05-02 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biology is in the midst of a era yielding many significant discoveries and promising many more. Unique to this era is the exponential growth in the size of information-packed databases. Inspired by a pressing need to analyze that data, Introduction to Computational Biology explores a new area of expertise that emerged from this fertile field- the combination of biological and information sciences. This introduction describes the mathematical structure of biological data, especially from sequences and chromosomes. After a brief survey of molecular biology, it studies restriction maps of DNA, rough landmark maps of the underlying sequences, and clones and clone maps. It examines problems associated with reading DNA sequences and comparing sequences to finding common patterns. The author then considers that statistics of pattern counts in sequences, RNA secondary structure, and the inference of evolutionary history of related sequences. Introduction to Computational Biology exposes the reader to the fascinating structure of biological data and explains how to treat related combinatorial and statistical problems. Written to describe mathematical formulation and development, this book helps set the stage for even more, truly interdisciplinary work in biology.

Book Mathematical Models in Biology

Download or read book Mathematical Models in Biology written by Elizabeth Spencer Allman and published by Cambridge University Press. This book was released on 2004 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory textbook on mathematical biology focuses on discrete models across a variety of biological subdisciplines. Biological topics treated include linear and non-linear models of populations, Markov models of molecular evolution, phylogenetic tree construction, genetics, and infectious disease models. The coverage of models of molecular evolution and phylogenetic tree construction from DNA sequence data is unique among books at this level. Computer investigations with MATLAB are incorporated throughout, in both exercises and more extensive projects, to give readers hands-on experience with the mathematical models developed. MATLAB programs accompany the text. Mathematical tools, such as matrix algebra, eigenvector analysis, and basic probability, are motivated by biological models and given self-contained developments, so that mathematical prerequisites are minimal.

Book Mathematics of Genome Analysis

Download or read book Mathematics of Genome Analysis written by Jerome K. Percus and published by Cambridge University Press. This book was released on 2002 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: The massive research effort known as the Human Genome Project is an attempt to record the sequence of the three trillion nucleotides that make up the human genome and to identify individual genes within this sequence. While the basic effort is of course a biological one, the description and classification of sequences also lend themselves naturally to mathematical and statistical modeling. This short textbook on the mathematics of genome analysis presents a brief description of several ways in which mathematics and statistics are being used in genome analysis and sequencing. It will be of interest not only to students but also to professional mathematicians curious about the subject.

Book Theory and Mathematical Methods in Bioinformatics

Download or read book Theory and Mathematical Methods in Bioinformatics written by Shiyi Shen and published by Springer Science & Business Media. This book was released on 2008-01-26 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph addresses, in a systematic and pedagogical manner, the mathematical methods and the algorithms required to deal with the molecularly based problems of bioinformatics. Prominent attention is given to pair-wise and multiple sequence alignment algorithms, stochastic models of mutations, modulus structure theory and protein configuration analysis. Strong links to the molecular structures of proteins, DNA and other biomolecules and their analyses are developed.

Book An Introduction to Bioinformatics Algorithms

Download or read book An Introduction to Bioinformatics Algorithms written by Neil C. Jones and published by MIT Press. This book was released on 2004-08-06 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory text that emphasizes the underlying algorithmic ideas that are driving advances in bioinformatics. This introductory text offers a clear exposition of the algorithmic principles driving advances in bioinformatics. Accessible to students in both biology and computer science, it strikes a unique balance between rigorous mathematics and practical techniques, emphasizing the ideas underlying algorithms rather than offering a collection of apparently unrelated problems. The book introduces biological and algorithmic ideas together, linking issues in computer science to biology and thus capturing the interest of students in both subjects. It demonstrates that relatively few design techniques can be used to solve a large number of practical problems in biology, and presents this material intuitively. An Introduction to Bioinformatics Algorithms is one of the first books on bioinformatics that can be used by students at an undergraduate level. It includes a dual table of contents, organized by algorithmic idea and biological idea; discussions of biologically relevant problems, including a detailed problem formulation and one or more solutions for each; and brief biographical sketches of leading figures in the field. These interesting vignettes offer students a glimpse of the inspirations and motivations for real work in bioinformatics, making the concepts presented in the text more concrete and the techniques more approachable.PowerPoint presentations, practical bioinformatics problems, sample code, diagrams, demonstrations, and other materials can be found at the Author's website.

Book Mathematical Models in Biology

Download or read book Mathematical Models in Biology written by Valeria Zazzu and published by Springer. This book was released on 2015-11-26 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an exciting collection of contributions based on the workshop “Bringing Maths to Life” held October 27-29, 2014 in Naples, Italy. The state-of-the art research in biology and the statistical and analytical challenges facing huge masses of data collection are treated in this Work. Specific topics explored in depth surround the sessions and special invited sessions of the workshop and include genetic variability via differential expression, molecular dynamics and modeling, complex biological systems viewed from quantitative models, and microscopy images processing, to name several. In depth discussions of the mathematical analysis required to extract insights from complex bodies of biological datasets, to aid development in the field novel algorithms, methods and software tools for genetic variability, molecular dynamics, and complex biological systems are presented in this book. Researchers and graduate students in biology, life science, and mathematics/statistics will find the content useful as it addresses existing challenges in identifying the gaps between mathematical modeling and biological research. The shared solutions will aid and promote further collaboration between life sciences and mathematics.

Book Algorithms in Bioinformatics

Download or read book Algorithms in Bioinformatics written by Wing-Kin Sung and published by CRC Press. This book was released on 2009-11-24 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thoroughly Describes Biological Applications, Computational Problems, and Various Algorithmic Solutions Developed from the author's own teaching material, Algorithms in Bioinformatics: A Practical Introduction provides an in-depth introduction to the algorithmic techniques applied in bioinformatics. For each topic, the author clearly details the bi

Book Computational Cell Biology

    Book Details:
  • Author : Christopher P. Fall
  • Publisher : Springer Science & Business Media
  • Release : 2007-06-04
  • ISBN : 0387224599
  • Pages : 484 pages

Download or read book Computational Cell Biology written by Christopher P. Fall and published by Springer Science & Business Media. This book was released on 2007-06-04 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides an introduction to dynamic modeling in molecular cell biology, taking a computational and intuitive approach. Detailed illustrations, examples, and exercises are included throughout the text. Appendices containing mathematical and computational techniques are provided as a reference tool.

Book Bioinformatics Algorithms

Download or read book Bioinformatics Algorithms written by Ion Mandoiu and published by John Wiley & Sons. This book was released on 2008-02-25 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents algorithmic techniques for solving problems in bioinformatics, including applications that shed new light on molecular biology This book introduces algorithmic techniques in bioinformatics, emphasizing their application to solving novel problems in post-genomic molecular biology. Beginning with a thought-provoking discussion on the role of algorithms in twenty-first-century bioinformatics education, Bioinformatics Algorithms covers: General algorithmic techniques, including dynamic programming, graph-theoretical methods, hidden Markov models, the fast Fourier transform, seeding, and approximation algorithms Algorithms and tools for genome and sequence analysis, including formal and approximate models for gene clusters, advanced algorithms for non-overlapping local alignments and genome tilings, multiplex PCR primer set selection, and sequence/network motif finding Microarray design and analysis, including algorithms for microarray physical design, missing value imputation, and meta-analysis of gene expression data Algorithmic issues arising in the analysis of genetic variation across human population, including computational inference of haplotypes from genotype data and disease association search in case/control epidemiologic studies Algorithmic approaches in structural and systems biology, including topological and structural classification in biochemistry, and prediction of protein-protein and domain-domain interactions Each chapter begins with a self-contained introduction to a computational problem; continues with a brief review of the existing literature on the subject and an in-depth description of recent algorithmic and methodological developments; and concludes with a brief experimental study and a discussion of open research challenges. This clear and approachable presentation makes the book appropriate for researchers, practitioners, and graduate students alike.

Book Mathematical Modeling of Biological Processes

Download or read book Mathematical Modeling of Biological Processes written by Avner Friedman and published by Springer. This book was released on 2014-09-19 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.