EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Introduction to Materials Modelling

Download or read book Introduction to Materials Modelling written by Zoe Barber and published by Maney Publishing. This book was released on 2005 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Materials modelling' describes the use of computer simulation for the prediction and understanding of the structure and properties of materials. The book covers a wide range of techniques, from the atomistic and quantum scale up to the continuum level, and introduces their applications in metals, ceramics, polymers and alloys. It has been based upon the Masters course in 'Materials Modelling' given at the Department of Materials Science and Metallurgy, University of Cambridge, UK, which is aimed particularly at graduate students with a background in any of the physical sciences.

Book Handbook of Materials Modeling

Download or read book Handbook of Materials Modeling written by Sidney Yip and published by Springer Science & Business Media. This book was released on 2007-11-17 with total page 2903 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.

Book Materials Modelling Using Density Functional Theory

Download or read book Materials Modelling Using Density Functional Theory written by Feliciano Giustino and published by Oxford University Press. This book was released on 2014 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book explains the fundamental ideas of density functional theory, and how this theory can be used as a powerful method for explaining and even predicting the properties of materials with stunning accuracy.

Book Introduction to Computational Materials Science

Download or read book Introduction to Computational Materials Science written by Richard LeSar and published by Cambridge University Press. This book was released on 2013-03-28 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasising essential methods and universal principles, this textbook provides everything students need to understand the basics of simulating materials behaviour. All the key topics are covered from electronic structure methods to microstructural evolution, appendices provide crucial background material, and a wealth of practical resources are available online to complete the teaching package. Modelling is examined at a broad range of scales, from the atomic to the mesoscale, providing students with a solid foundation for future study and research. Detailed, accessible explanations of the fundamental equations underpinning materials modelling are presented, including a full chapter summarising essential mathematical background. Extensive appendices, including essential background on classical and quantum mechanics, electrostatics, statistical thermodynamics and linear elasticity, provide the background necessary to fully engage with the fundamentals of computational modelling. Exercises, worked examples, computer codes and discussions of practical implementations methods are all provided online giving students the hands-on experience they need.

Book Applied Computational Materials Modeling

Download or read book Applied Computational Materials Modeling written by Guillermo Bozzolo and published by Springer Science & Business Media. This book was released on 2007-12-19 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scope of this book is to identify and emphasize the successful link between computational materials modeling as a simulation and design tool and its synergistic application to experimental research and alloy development. The book provides a more balanced perspective of the role that computational modeling can play in every day research and development efforts. Each chapter describes one or more particular computational tool and how they are best used.

Book Frontiers in Materials Modelling and Design

Download or read book Frontiers in Materials Modelling and Design written by Vijay Kumar and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is about fifteen years since we started hearing about Computational Ma terials Science and Materials Modelling and Design. Fifteen years is a long time and all of us realise that the use of computational methods in the design of materials has not been rapid enough. We also know the reasons for this. Mate rials properties are not dependent on a single phenomenon. The properties of materials cover a wide range from electronic, thermal, mechanical to chemical and electro-chemical. Each of these class of properties depend on specific phe nomenon that takes place at different scales or levels of length from sub atomic to visible length levels. The energies controlling the phenomena also varies widely from a fraction of an electron volt to many joules. The complexity of materials are such that while models and methods for treating individual phenomenon have been perfected, incorporating them into a single programme taking into account the synergism is a formidable task. Two specific areas where the progress has been very rapid and substantive are prediction of phase stability and phase diagrams and embrittlement of steels by metalloids. The first three sections of the book contain papers which review the theoreti cal principles underlying materials modeling and simulations and show how they can be applied to the problems just mentioned. There is now a strong interest in designing new materials starting from nanoparticles and clusters.

Book Computational Materials Engineering

Download or read book Computational Materials Engineering written by Koenraad George Frans Janssens and published by Academic Press. This book was released on 2010-07-26 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Materials Engineering is an advanced introduction to the computer-aided modeling of essential material properties and behavior, including the physical, thermal and chemical parameters, as well as the mathematical tools used to perform simulations. Its emphasis will be on crystalline materials, which includes all metals. The basis of Computational Materials Engineering allows scientists and engineers to create virtual simulations of material behavior and properties, to better understand how a particular material works and performs and then use that knowledge to design improvements for particular material applications. The text displays knowledge of software designers, materials scientists and engineers, and those involved in materials applications like mechanical engineers, civil engineers, electrical engineers, and chemical engineers. Readers from students to practicing engineers to materials research scientists will find in this book a single source of the major elements that make up contemporary computer modeling of materials characteristics and behavior. The reader will gain an understanding of the underlying statistical and analytical tools that are the basis for modeling complex material interactions, including an understanding of computational thermodynamics and molecular kinetics; as well as various modeling systems. Finally, the book will offer the reader a variety of algorithms to use in solving typical modeling problems so that the theory presented herein can be put to real-world use. Balanced coverage of fundamentals of materials modeling, as well as more advanced aspects of modeling, such as modeling at all scales from the atomic to the molecular to the macro-material Concise, yet rigorous mathematical coverage of such analytical tools as the Potts type Monte Carlo method, cellular automata, phase field, dislocation dynamics and Finite Element Analysis in statistical and analytical modeling

Book Modeling Materials

    Book Details:
  • Author : Ellad B. Tadmor
  • Publisher : Cambridge University Press
  • Release : 2011-11-24
  • ISBN : 1139500651
  • Pages : 789 pages

Download or read book Modeling Materials written by Ellad B. Tadmor and published by Cambridge University Press. This book was released on 2011-11-24 with total page 789 pages. Available in PDF, EPUB and Kindle. Book excerpt: Material properties emerge from phenomena on scales ranging from Angstroms to millimeters, and only a multiscale treatment can provide a complete understanding. Materials researchers must therefore understand fundamental concepts and techniques from different fields, and these are presented in a comprehensive and integrated fashion for the first time in this book. Incorporating continuum mechanics, quantum mechanics, statistical mechanics, atomistic simulations and multiscale techniques, the book explains many of the key theoretical ideas behind multiscale modeling. Classical topics are blended with new techniques to demonstrate the connections between different fields and highlight current research trends. Example applications drawn from modern research on the thermo-mechanical properties of crystalline solids are used as a unifying focus throughout the text. Together with its companion book, Continuum Mechanics and Thermodynamics (Cambridge University Press, 2011), this work presents the complete fundamentals of materials modeling for graduate students and researchers in physics, materials science, chemistry and engineering.

Book Atomistic Modeling of Materials Failure

Download or read book Atomistic Modeling of Materials Failure written by Markus J. Buehler and published by Springer Science & Business Media. This book was released on 2008-08-07 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introduction to molecular and atomistic modeling techniques applied to fracture and deformation of solids, focusing on a variety of brittle, ductile, geometrically confined and biological materials. The overview includes computational methods and techniques operating at the atomic scale, and describes how these techniques can be used to model cracks and other deformation mechanisms. The book aims to make new molecular modeling techniques available to a wider community.

Book An Introduction to Game Theoretic Modelling

Download or read book An Introduction to Game Theoretic Modelling written by Mike Mesterton-Gibbons and published by American Mathematical Soc.. This book was released on 2001 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introduction to game theory and applications with an emphasis on self-discovery from the perspective of a mathematical modeller. The book deals in a unified manner with the central concepts of both classical and evolutionary game theory. The key ideas are illustrated throughout by a wide variety of well-chosen examples of both human and non-human behavior, including car pooling, price fixing, food sharing, sex allocation and competition for territories or oviposition sites. There are numerous exercises with solutions.

Book Synthesis  Modelling and Characterization of 2D Materials and their Heterostructures

Download or read book Synthesis Modelling and Characterization of 2D Materials and their Heterostructures written by Eui-Hyeok Yang and published by Elsevier. This book was released on 2020-06-19 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties. Explains multiscale computational techniques, from atomic to continuum scale, covering different time and length scales Provides fundamental theoretical insights, example problems, sample code and exercise problems Outlines major characterization and synthesis methods for different types of 2D materials

Book Constitutive Modeling of Engineering Materials

Download or read book Constitutive Modeling of Engineering Materials written by Vladimir Buljak and published by Academic Press. This book was released on 2021-02-18 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Constitutive Modeling of Engineering Materials provides an extensive theoretical overview of elastic, plastic, damage, and fracture models, giving readers the foundational knowledge needed to successfully apply them to and solve common engineering material problems. Particular attention is given to inverse analysis, parameter identification, and the numerical implementation of models with the finite element method. Application in practice is discussed in detail, showing examples of working computer programs for simple constitutive behaviors. Examples explore the important components of material modeling which form the building blocks of any complex constitutive behavior. Addresses complex behaviors in a wide range of materials, from polymers, to metals and shape memory alloys Covers constitutive models with both small and large deformations Provides detailed examples of computer implementations for material models

Book Modelling and Simulation in the Science of Micro  and Meso Porous Materials

Download or read book Modelling and Simulation in the Science of Micro and Meso Porous Materials written by C.Richard A. Catlow and published by Elsevier. This book was released on 2017-09-20 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modelling and Simulation in the Science of Micro- and Meso-Porous Materials addresses significant developments in the field of micro- and meso-porous science. The book includes sections on Structure Modeling and Prediction, Synthesis, Nucleation and Growth, Sorption and Separation processes, Reactivity and Catalysis, and Fundamental Developments in Methodology to give a complete overview of the techniques currently utilized in this rapidly advancing field. It thoroughly addresses the major challenges in the field of microporous materials, including the crystallization mechanism of porous materials and rational synthesis of porous materials with controllable porous structures and compositions. New applications in emerging areas are also covered, including biomass conversion, C1 chemistry, and CO2 capture. Authored and edited by experts in the field of micro- and meso-porous materials Includes introductory material and background both on the science of microporous materials and on the techniques employed in contemporary modeling studies Rigorous enough for scientists conducting related research, but also accessible to graduate students in chemistry, chemical engineering, and materials science

Book Materials Modelling

Download or read book Materials Modelling written by English and published by CRC Press. This book was released on 1992-07-01 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Materials Modelling: From Theory to Technology, a distinguished collection of authors has been assembled to celebrate the 60th birthday of Dr. R. Bullough, FRS and honor his contribution to the subject over the past 40 years. The volume explores subjects that have implications in a wide range of technologies, focusing on how basic research can be applied to real problems in science and engineering. Linking theory and technology, the book progresses from the theoretical background to current and future practical applications of modeling. Accessible to a diverse audience, it requires little specialist knowledge beyond a physics degree. The book is useful reading for postgraduates and researchers in condensed matter, nuclear engineering, and physical metallurgy, in addition to workers in R&D laboratories and the high technology industry.

Book Understanding Molecular Simulation

Download or read book Understanding Molecular Simulation written by Daan Frenkel and published by Elsevier. This book was released on 2001-10-19 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: · Transition path sampling and diffusive barrier crossing to simulaterare events · Dissipative particle dynamic as a course-grained simulation technique · Novel schemes to compute the long-ranged forces · Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations · Multiple-time step algorithms as an alternative for constraints · Defects in solids · The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules · Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.

Book Material Modeling in Finite Element Analysis

Download or read book Material Modeling in Finite Element Analysis written by Zhaochun Yang and published by CRC Press. This book was released on 2019-10-10 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite element analysis has been widely applied in mechanical, civil, and biomedical designs. This book aims to provide the readers comprehensive views of various material models with practical examples, which would help readers understand various materials, and build appropriate material models in the finite element analysis. This book is composed of four main parts: 1) metals, 2) polymers, 3) soils, and 4) modern materials. Each part starts with the structure and function of different materials and then follows the corresponding material models such as BISO, MISO, Chaboche model in metals, Arruda-Boyce model, Mooney-Rivlin model, Ogden model in polymers, Mohr-Coulomb model, Cam Clay model and Jointed Rock model in geomechanics, composites and shape memory alloys in modern materials. The final section presents some specific problems, such as metal forming process, combustion chamber, Mullins effect of rubber tire, breast shape after breast surgery, viscoelasticity of liver soft tissues, tunnel excavation, slope stability, orthodontic wire, and piezoelectric microaccelerometer. All modeling files are provided in the appendixes of the book. This book would be helpful for graduate students and researchers in the mechanical, civil, and biomedical fields who conduct finite element analysis. The book provides all readers with comprehensive understanding of modeling various materials.

Book Introduction to Computational Science

Download or read book Introduction to Computational Science written by Angela B. Shiflet and published by Princeton University Press. This book was released on 2014-03-30 with total page 857 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to computational science—now fully updated and expanded Computational science is an exciting new field at the intersection of the sciences, computer science, and mathematics because much scientific investigation now involves computing as well as theory and experiment. This textbook provides students with a versatile and accessible introduction to the subject. It assumes only a background in high school algebra, enables instructors to follow tailored pathways through the material, and is the only textbook of its kind designed specifically for an introductory course in the computational science and engineering curriculum. While the text itself is generic, an accompanying website offers tutorials and files in a variety of software packages. This fully updated and expanded edition features two new chapters on agent-based simulations and modeling with matrices, ten new project modules, and an additional module on diffusion. Besides increased treatment of high-performance computing and its applications, the book also includes additional quick review questions with answers, exercises, and individual and team projects. The only introductory textbook of its kind—now fully updated and expanded Features two new chapters on agent-based simulations and modeling with matrices Increased coverage of high-performance computing and its applications Includes additional modules, review questions, exercises, and projects An online instructor's manual with exercise answers, selected project solutions, and a test bank and solutions (available only to professors) An online illustration package is available to professors