EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Introduction to Complex Hyperbolic Spaces

Download or read book Introduction to Complex Hyperbolic Spaces written by Serge Lang and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the appearance of Kobayashi's book, there have been several re sults at the basic level of hyperbolic spaces, for instance Brody's theorem, and results of Green, Kiernan, Kobayashi, Noguchi, etc. which make it worthwhile to have a systematic exposition. Although of necessity I re produce some theorems from Kobayashi, I take a different direction, with different applications in mind, so the present book does not super sede Kobayashi's. My interest in these matters stems from their relations with diophan tine geometry. Indeed, if X is a projective variety over the complex numbers, then I conjecture that X is hyperbolic if and only if X has only a finite number of rational points in every finitely generated field over the rational numbers. There are also a number of subsidiary conjectures related to this one. These conjectures are qualitative. Vojta has made quantitative conjectures by relating the Second Main Theorem of Nevan linna theory to the theory of heights, and he has conjectured bounds on heights stemming from inequalities having to do with diophantine approximations and implying both classical and modern conjectures. Noguchi has looked at the function field case and made substantial progress, after the line started by Grauert and Grauert-Reckziegel and continued by a recent paper of Riebesehl. The book is divided into three main parts: the basic complex analytic theory, differential geometric aspects, and Nevanlinna theory. Several chapters of this book are logically independent of each other.

Book Hyperbolic Complex Spaces

    Book Details:
  • Author : Shoshichi Kobayashi
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-09
  • ISBN : 3662035820
  • Pages : 480 pages

Download or read book Hyperbolic Complex Spaces written by Shoshichi Kobayashi and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the three decades since the introduction of the Kobayashi distance, the subject of hyperbolic complex spaces and holomorphic mappings has grown to be a big industry. This book gives a comprehensive and systematic account on the Carathéodory and Kobayashi distances, hyperbolic complex spaces and holomorphic mappings with geometric methods. A very complete list of references should be useful for prospective researchers in this area.

Book Complex Hyperbolic Geometry

Download or read book Complex Hyperbolic Geometry written by William Mark Goldman and published by Oxford University Press. This book was released on 1999 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive treatment of the geometry of complex hyperbolic space, a rich area of research with numerous connections to other branches of mathematics, including Riemannian geometry, complex analysis, symplectic and contact geometry, Lie groups, and harmonic analysis.

Book Analytical and Geometric Aspects of Hyperbolic Space

Download or read book Analytical and Geometric Aspects of Hyperbolic Space written by D. B. A. Epstein and published by CUP Archive. This book was released on 1987-03-19 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work and its companion volume form the collected papers from two symposia held at Durham and Warwick in 1984. Volume I contains an expository account by David Epstein and his students of certain parts of Thurston's famous mimeographed notes. This is preceded by a clear and comprehensive account by S. J. Patterson of his fundamental work on measures on limit sets of Kleinian groups.

Book Introduction to Hyperbolic Geometry

Download or read book Introduction to Hyperbolic Geometry written by Arlan Ramsay and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to hyperbolic and differential geometry that provides material in the early chapters that can serve as a textbook for a standard upper division course on hyperbolic geometry. For that material, the students need to be familiar with calculus and linear algebra and willing to accept one advanced theorem from analysis without proof. The book goes well beyond the standard course in later chapters, and there is enough material for an honors course, or for supplementary reading. Indeed, parts of the book have been used for both kinds of courses. Even some of what is in the early chapters would surely not be nec essary for a standard course. For example, detailed proofs are given of the Jordan Curve Theorem for Polygons and of the decomposability of poly gons into triangles, These proofs are included for the sake of completeness, but the results themselves are so believable that most students should skip the proofs on a first reading. The axioms used are modern in character and more "user friendly" than the traditional ones. The familiar real number system is used as an in gredient rather than appearing as a result of the axioms. However, it should not be thought that the geometric treatment is in terms of models: this is an axiomatic approach that is just more convenient than the traditional ones.

Book Outer Circles

    Book Details:
  • Author : A. Marden
  • Publisher : Cambridge University Press
  • Release : 2007-05-31
  • ISBN : 1139463764
  • Pages : 393 pages

Download or read book Outer Circles written by A. Marden and published by Cambridge University Press. This book was released on 2007-05-31 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: We live in a three-dimensional space; what sort of space is it? Can we build it from simple geometric objects? The answers to such questions have been found in the last 30 years, and Outer Circles describes the basic mathematics needed for those answers as well as making clear the grand design of the subject of hyperbolic manifolds as a whole. The purpose of Outer Circles is to provide an account of the contemporary theory, accessible to those with minimal formal background in topology, hyperbolic geometry, and complex analysis. The text explains what is needed, and provides the expertise to use the primary tools to arrive at a thorough understanding of the big picture. This picture is further filled out by numerous exercises and expositions at the ends of the chapters and is complemented by a profusion of high quality illustrations. There is an extensive bibliography for further study.

Book Lectures on Hyperbolic Geometry

Download or read book Lectures on Hyperbolic Geometry written by Riccardo Benedetti and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focussing on the geometry of hyperbolic manifolds, the aim here is to provide an exposition of some fundamental results, while being as self-contained, complete, detailed and unified as possible. Following some classical material on the hyperbolic space and the Teichmüller space, the book centers on the two fundamental results: Mostow's rigidity theorem (including a complete proof, following Gromov and Thurston) and Margulis' lemma. These then form the basis for studying Chabauty and geometric topology; a unified exposition is given of Wang's theorem and the Jorgensen-Thurston theory; and much space is devoted to the 3D case: a complete and elementary proof of the hyperbolic surgery theorem, based on the representation of three manifolds as glued ideal tetrahedra.

Book An Introduction to the Heisenberg Group and the Sub Riemannian Isoperimetric Problem

Download or read book An Introduction to the Heisenberg Group and the Sub Riemannian Isoperimetric Problem written by Luca Capogna and published by Springer Science & Business Media. This book was released on 2007-08-08 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an up-to-date account of progress on Pansu's celebrated problem on the sub-Riemannian isoperimetric profile of the Heisenberg group. It also serves as an introduction to the general field of sub-Riemannian geometric analysis. It develops the methods and tools of sub-Riemannian differential geometry, nonsmooth analysis, and geometric measure theory suitable for attacks on Pansu's problem.

Book Hyperbolic Geometry

    Book Details:
  • Author : James W. Anderson
  • Publisher : Springer Science & Business Media
  • Release : 2013-06-29
  • ISBN : 1447139879
  • Pages : 239 pages

Download or read book Hyperbolic Geometry written by James W. Anderson and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thoroughly updated, featuring new material on important topics such as hyperbolic geometry in higher dimensions and generalizations of hyperbolicity Includes full solutions for all exercises Successful first edition sold over 800 copies in North America

Book Hyperbolic Manifolds and Discrete Groups

Download or read book Hyperbolic Manifolds and Discrete Groups written by Michael Kapovich and published by Springer Science & Business Media. This book was released on 2009-08-04 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hyperbolic Manifolds and Discrete Groups is at the crossroads of several branches of mathematics: hyperbolic geometry, discrete groups, 3-dimensional topology, geometric group theory, and complex analysis. The main focus throughout the text is on the "Big Monster," i.e., on Thurston’s hyperbolization theorem, which has not only completely changes the landscape of 3-dimensinal topology and Kleinian group theory but is one of the central results of 3-dimensional topology. The book is fairly self-contained, replete with beautiful illustrations, a rich set of examples of key concepts, numerous exercises, and an extensive bibliography and index. It should serve as an ideal graduate course/seminar text or as a comprehensive reference.

Book Complex Kleinian Groups

    Book Details:
  • Author : Angel Cano
  • Publisher : Springer Science & Business Media
  • Release : 2012-11-05
  • ISBN : 3034804814
  • Pages : 288 pages

Download or read book Complex Kleinian Groups written by Angel Cano and published by Springer Science & Business Media. This book was released on 2012-11-05 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph lays down the foundations of the theory of complex Kleinian groups, a newly born area of mathematics whose origin traces back to the work of Riemann, Poincaré, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP1. When going into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere?, or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories are different in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition. In the second case we are talking about an area of mathematics that still is in its childhood, and this is the focus of study in this monograph. This brings together several important areas of mathematics, as for instance classical Kleinian group actions, complex hyperbolic geometry, chrystallographic groups and the uniformization problem for complex manifolds.​

Book An Introduction to Teichm  ller Spaces

Download or read book An Introduction to Teichm ller Spaces written by Yoichi Imayoshi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an easy and compact access to the theory of TeichmA1/4ller spaces, starting from the most elementary aspects to the most recent developments, e.g. the role this theory plays with regard to string theory. TeichmA1/4ller spaces give parametrization of all the complex structures on a given Riemann surface. This subject is related to many different areas of mathematics including complex analysis, algebraic geometry, differential geometry, topology in two and three dimensions, Kleinian and Fuchsian groups, automorphic forms, complex dynamics, and ergodic theory. Recently, TeichmA1/4ller spaces have begun to play an important role in string theory. Imayoshi and Taniguchi have attempted to make the book as self-contained as possible. They present numerous examples and heuristic arguments in order to help the reader grasp the ideas of TeichmA1/4ller theory. The book will be an excellent source of information for graduate students and reserachers in complex analysis and algebraic geometry as well as for theoretical physicists working in quantum theory.

Book Geometry and Dynamics in Gromov Hyperbolic Metric Spaces

Download or read book Geometry and Dynamics in Gromov Hyperbolic Metric Spaces written by Tushar Das and published by American Mathematical Soc.. This book was released on 2017-04-14 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the foundations of the theory of groups and semigroups acting isometrically on Gromov hyperbolic metric spaces. Particular emphasis is paid to the geometry of their limit sets and on behavior not found in the proper setting. The authors provide a number of examples of groups which exhibit a wide range of phenomena not to be found in the finite-dimensional theory. The book contains both introductory material to help beginners as well as new research results, and closes with a list of attractive unsolved problems.

Book Hyperbolic Manifolds and Holomorphic Mappings

Download or read book Hyperbolic Manifolds and Holomorphic Mappings written by Shoshichi Kobayashi and published by World Scientific Publishing Company. This book was released on 2005-11-02 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of this influential book, published in 1970, opened up a completely new field of invariant metrics and hyperbolic manifolds. The large number of papers on the topics covered by the book written since its appearance led Mathematical Reviews to create two new subsections “invariant metrics and pseudo-distances” and “hyperbolic complex manifolds” within the section “holomorphic mappings”. The invariant distance introduced in the first edition is now called the “Kobayashi distance”, and the hyperbolicity in the sense of this book is called the “Kobayashi hyperbolicity” to distinguish it from other hyperbolicities. This book continues to serve as the best introduction to hyperbolic complex analysis and geometry and is easily accessible to students since very little is assumed. The new edition adds comments on the most recent developments in the field.

Book Hyperbolic Manifolds and Kleinian Groups

Download or read book Hyperbolic Manifolds and Kleinian Groups written by Katsuhiko Matsuzaki and published by Clarendon Press. This book was released on 1998-04-30 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Kleinian group is a discrete subgroup of the isometry group of hyperbolic 3-space, which is also regarded as a subgroup of Möbius transformations in the complex plane. The present book is a comprehensive guide to theories of Kleinian groups from the viewpoints of hyperbolic geometry and complex analysis. After 1960, Ahlfors and Bers were the leading researchers of Kleinian groups and helped it to become an active area of complex analysis as a branch of Teichmüller theory. Later, Thurston brought a revolution to this area with his profound investigation of hyperbolic manifolds, and at the same time complex dynamical approach was strongly developed by Sullivan. This book provides fundamental results and important theorems which are needed for access to the frontiers of the theory from a modern viewpoint.

Book Foundations of Hyperbolic Manifolds

Download or read book Foundations of Hyperbolic Manifolds written by John Ratcliffe and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 761 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.

Book Spectral Theory of Infinite Area Hyperbolic Surfaces

Download or read book Spectral Theory of Infinite Area Hyperbolic Surfaces written by David Borthwick and published by Birkhäuser. This book was released on 2016-07-12 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constants for resonance bounds. A new chapter introduces recently developed techniques for resonance calculation that illuminate the existing results and conjectures on resonance distribution. The spectral theory of hyperbolic surfaces is a point of intersection for a great variety of areas, including quantum physics, discrete groups, differential geometry, number theory, complex analysis, and ergodic theory. This book will serve as a valuable resource for graduate students and researchers from these and other related fields. Review of the first edition: "The exposition is very clear and thorough, and essentially self-contained; the proofs are detailed...The book gathers together some material which is not always easily available in the literature...To conclude, the book is certainly at a level accessible to graduate students and researchers from a rather large range of fields. Clearly, the reader...would certainly benefit greatly from it." (Colin Guillarmou, Mathematical Reviews, Issue 2008 h)