Download or read book Introduction and Implementations of the Kalman Filter written by Felix Govaers and published by BoD – Books on Demand. This book was released on 2019-05-22 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sensor data fusion is the process of combining error-prone, heterogeneous, incomplete, and ambiguous data to gather a higher level of situational awareness. In principle, all living creatures are fusing information from their complementary senses to coordinate their actions and to detect and localize danger. In sensor data fusion, this process is transferred to electronic systems, which rely on some "awareness" of what is happening in certain areas of interest. By means of probability theory and statistics, it is possible to model the relationship between the state space and the sensor data. The number of ingredients of the resulting Kalman filter is limited, but its applications are not.
Download or read book Handbook of Position Location written by Reza Zekavat and published by John Wiley & Sons. This book was released on 2019-03-06 with total page 1376 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive review of position location technology — from fundamental theory to advanced practical applications Positioning systems and location technologies have become significant components of modern life, used in a multitude of areas such as law enforcement and security, road safety and navigation, personnel and object tracking, and many more. Position location systems have greatly reduced societal vulnerabilities and enhanced the quality of life for billions of people around the globe — yet limited resources are available to researchers and students in this important field. The Handbook of Position Location: Theory, Practice, and Advances fills this gap, providing a comprehensive overview of both fundamental and cutting-edge techniques and introducing practical methods of advanced localization and positioning. Now in its second edition, this handbook offers broad and in-depth coverage of essential topics including Time of Arrival (TOA) and Direction of Arrival (DOA) based positioning, Received Signal Strength (RSS) based positioning, network localization, and others. Topics such as GPS, autonomous vehicle applications, and visible light localization are examined, while major revisions to chapters such as body area network positioning and digital signal processing for GNSS receivers reflect current and emerging advances in the field. This new edition: Presents new and revised chapters on topics including localization error evaluation, Kalman filtering, positioning in inhomogeneous media, and Global Positioning (GPS) in harsh environments Offers MATLAB examples to demonstrate fundamental algorithms for positioning and provides online access to all MATLAB code Allows practicing engineers and graduate students to keep pace with contemporary research and new technologies Contains numerous application-based examples including the application of localization to drone navigation, capsule endoscopy localization, and satellite navigation and localization Reviews unique applications of position location systems, including GNSS and RFID-based localization systems The Handbook of Position Location: Theory, Practice, and Advances is valuable resource for practicing engineers and researchers seeking to keep pace with current developments in the field, graduate students in need of clear and accurate course material, and university instructors teaching the fundamentals of wireless localization.
Download or read book Kalman Filtering written by Mohinder S. Grewal and published by John Wiley & Sons. This book was released on 2015-02-02 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: The definitive textbook and professional reference on Kalman Filtering – fully updated, revised, and expanded This book contains the latest developments in the implementation and application of Kalman filtering. Authors Grewal and Andrews draw upon their decades of experience to offer an in-depth examination of the subtleties, common pitfalls, and limitations of estimation theory as it applies to real-world situations. They present many illustrative examples including adaptations for nonlinear filtering, global navigation satellite systems, the error modeling of gyros and accelerometers, inertial navigation systems, and freeway traffic control. Kalman Filtering: Theory and Practice Using MATLAB, Fourth Edition is an ideal textbook in advanced undergraduate and beginning graduate courses in stochastic processes and Kalman filtering. It is also appropriate for self-instruction or review by practicing engineers and scientists who want to learn more about this important topic.
Download or read book Data Assimilation written by Geir Evensen and published by Springer Science & Business Media. This book was released on 2006-12-22 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews popular data-assimilation methods, such as weak and strong constraint variational methods, ensemble filters and smoothers. The author shows how different methods can be derived from a common theoretical basis, as well as how they differ or are related to each other, and which properties characterize them, using several examples. Readers will appreciate the included introductory material and detailed derivations in the text, and a supplemental web site.
Download or read book An Introduction to Kalman Filtering with MATLAB Examples written by Narayan Kovvali and published by Morgan & Claypool Publishers. This book was released on 2013-09-01 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Kalman filter is the Bayesian optimum solution to the problem of sequentially estimating the states of a dynamical system in which the state evolution and measurement processes are both linear and Gaussian. Given the ubiquity of such systems, the Kalman filter finds use in a variety of applications, e.g., target tracking, guidance and navigation, and communications systems. The purpose of this book is to present a brief introduction to Kalman filtering. The theoretical framework of the Kalman filter is first presented, followed by examples showing its use in practical applications. Extensions of the method to nonlinear problems and distributed applications are discussed. A software implementation of the algorithm in the MATLAB programming language is provided, as well as MATLAB code for several example applications discussed in the manuscript.
Download or read book Kalman Filters written by Ginalber Luiz Serra and published by BoD – Books on Demand. This book was released on 2018-02-21 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent issues on theory and practice of Kalman filters, with a comprehensive treatment of a selected number of concepts, techniques, and advanced applications. From an interdisciplinary point of view, the contents from each chapter bring together an international scientific community to discuss the state of the art on Kalman filter-based methodologies for adaptive/distributed filtering, optimal estimation, dynamic prediction, nonstationarity, robot navigation, global navigation satellite systems, moving object tracking, optical communication systems, and active power filters, among others. The theoretical and methodological foundations combined with extensive experimental explanation make this book a reference suitable for students, practicing engineers, and researchers in sciences and engineering.
Download or read book Optimal State Estimation written by Dan Simon and published by John Wiley & Sons. This book was released on 2006-06-19 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: A bottom-up approach that enables readers to master and apply the latest techniques in state estimation This book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering. While there are other textbooks that treat state estimation, this one offers special features and a unique perspective and pedagogical approach that speed learning: * Straightforward, bottom-up approach begins with basic concepts and then builds step by step to more advanced topics for a clear understanding of state estimation * Simple examples and problems that require only paper and pen to solve lead to an intuitive understanding of how theory works in practice * MATLAB(r)-based source code that corresponds to examples in the book, available on the author's Web site, enables readers to recreate results and experiment with other simulation setups and parameters Armed with a solid foundation in the basics, readers are presented with a careful treatment of advanced topics, including unscented filtering, high order nonlinear filtering, particle filtering, constrained state estimation, reduced order filtering, robust Kalman filtering, and mixed Kalman/H? filtering. Problems at the end of each chapter include both written exercises and computer exercises. Written exercises focus on improving the reader's understanding of theory and key concepts, whereas computer exercises help readers apply theory to problems similar to ones they are likely to encounter in industry. With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory. It also serves as a reference for engineers and science professionals across a wide array of industries.
Download or read book Advanced Kalman Filtering Least Squares and Modeling written by Bruce P. Gibbs and published by John Wiley & Sons. This book was released on 2011-03-29 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended primarily as a handbook for engineers who must design practical systems. Its primary goal is to discuss model development in sufficient detail so that the reader may design an estimator that meets all application requirements and is robust to modeling assumptions. Since it is sometimes difficult to a priori determine the best model structure, use of exploratory data analysis to define model structure is discussed. Methods for deciding on the “best” model are also presented. A second goal is to present little known extensions of least squares estimation or Kalman filtering that provide guidance on model structure and parameters, or make the estimator more robust to changes in real-world behavior. A third goal is discussion of implementation issues that make the estimator more accurate or efficient, or that make it flexible so that model alternatives can be easily compared. The fourth goal is to provide the designer/analyst with guidance in evaluating estimator performance and in determining/correcting problems. The final goal is to provide a subroutine library that simplifies implementation, and flexible general purpose high-level drivers that allow both easy analysis of alternative models and access to extensions of the basic filtering. Supplemental materials and up-to-date errata are downloadable at http://booksupport.wiley.com.
Download or read book Optimal Filtering written by Brian D. O. Anderson and published by Courier Corporation. This book was released on 2012-05-23 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graduate-level text extends studies of signal processing, particularly regarding communication systems and digital filtering theory. Topics include filtering, linear systems, and estimation; discrete-time Kalman filter; time-invariant filters; more. 1979 edition.
Download or read book Fundamentals of Kalman Filtering written by Paul Zarchan and published by AIAA (American Institute of Aeronautics & Astronautics). This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical basics -- Method of least squares -- Recursive least-squares filtering -- Polynomial Kalman filters -- Kalman filters in a nonpolynomial world -- Continuous polynomial Kalman filter -- Extended Kalman filtering -- Drag and falling object -- Cannon-launched projectile tracking problem -- Tracking a sine wave -- Satellite navigation -- Biases -- Linearized Kalman filtering -- Miscellaneous topics -- Fading-memory filter -- Assorted techniques for improving Kalman-filter performance -- Fixed-memory filters -- Chain-rule and least-squares filtering -- Filter bank approach to tracking a sine wave -- Appendix A: Fundamentals of Kalman-filtering software -- Appendix B: Key formula and concept summary
Download or read book Optimal and Robust Estimation written by Frank L. Lewis and published by CRC Press. This book was released on 2017-12-19 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: More than a decade ago, world-renowned control systems authority Frank L. Lewis introduced what would become a standard textbook on estimation, under the title Optimal Estimation, used in top universities throughout the world. The time has come for a new edition of this classic text, and Lewis enlisted the aid of two accomplished experts to bring the book completely up to date with the estimation methods driving today's high-performance systems. A Classic Revisited Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, Second Edition reflects new developments in estimation theory and design techniques. As the title suggests, the major feature of this edition is the inclusion of robust methods. Three new chapters cover the robust Kalman filter, H-infinity filtering, and H-infinity filtering of discrete-time systems. Modern Tools for Tomorrow's Engineers This text overflows with examples that highlight practical applications of the theory and concepts. Design algorithms appear conveniently in tables, allowing students quick reference, easy implementation into software, and intuitive comparisons for selecting the best algorithm for a given application. In addition, downloadable MATLAB® code allows students to gain hands-on experience with industry-standard software tools for a wide variety of applications. This cutting-edge and highly interactive text makes teaching, and learning, estimation methods easier and more modern than ever.
Download or read book Tracking and Kalman Filtering Made Easy written by Eli Brookner and published by Wiley-Interscience. This book was released on 1998 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: TRACKING, PREDICTION, AND SMOOTHING BASICS. g and g-h-k Filters. Kalman Filter. Practical Issues for Radar Tracking. LEAST-SQUARES FILTERING, VOLTAGE PROCESSING, ADAPTIVE ARRAY PROCESSING, AND EXTENDED KALMAN FILTER. Least-Squares and Minimum-Variance Estimates for Linear Time-Invariant Systems. Fixed-Memory Polynomial Filter. Expanding- Memory (Growing-Memory) Polynomial Filters. Fading-Memory (Discounted Least-Squares) Filter. General Form for Linear Time-Invariant System. General Recursive Minimum-Variance Growing-Memory Filter (Bayes and Kalman Filters without Target Process Noise). Voltage Least-Squares Algorithms Revisited. Givens Orthonormal Transformation. Householder Orthonormal Transformation. Gram--Schmidt Orthonormal Transformation. More on Voltage-Processing Techniques. Linear Time-Variant System. Nonlinear Observation Scheme and Dynamic Model (Extended Kalman Filter). Bayes Algorithm with Iterative Differential Correction for Nonlinear Systems. Kalman Filter Revisited. Appendix. Problems. Symbols and Acronyms. Solution to Selected Problems. References. Index.
Download or read book Kalman Filtering and Neural Networks written by Simon Haykin and published by John Wiley & Sons. This book was released on 2004-03-24 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: State-of-the-art coverage of Kalman filter methods for the design of neural networks This self-contained book consists of seven chapters by expert contributors that discuss Kalman filtering as applied to the training and use of neural networks. Although the traditional approach to the subject is almost always linear, this book recognizes and deals with the fact that real problems are most often nonlinear. The first chapter offers an introductory treatment of Kalman filters with an emphasis on basic Kalman filter theory, Rauch-Tung-Striebel smoother, and the extended Kalman filter. Other chapters cover: An algorithm for the training of feedforward and recurrent multilayered perceptrons, based on the decoupled extended Kalman filter (DEKF) Applications of the DEKF learning algorithm to the study of image sequences and the dynamic reconstruction of chaotic processes The dual estimation problem Stochastic nonlinear dynamics: the expectation-maximization (EM) algorithm and the extended Kalman smoothing (EKS) algorithm The unscented Kalman filter Each chapter, with the exception of the introduction, includes illustrative applications of the learning algorithms described here, some of which involve the use of simulated and real-life data. Kalman Filtering and Neural Networks serves as an expert resource for researchers in neural networks and nonlinear dynamical systems.
Download or read book A Kalman Filter Primer written by Randall L. Eubank and published by CRC Press. This book was released on 2005-11-29 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: System state estimation in the presence of noise is critical for control systems, signal processing, and many other applications in a variety of fields. Developed decades ago, the Kalman filter remains an important, powerful tool for estimating the variables in a system in the presence of noise. However, when inundated with theory and vast notations, learning just how the Kalman filter works can be a daunting task. With its mathematically rigorous, “no frills” approach to the basic discrete-time Kalman filter, A Kalman Filter Primer builds a thorough understanding of the inner workings and basic concepts of Kalman filter recursions from first principles. Instead of the typical Bayesian perspective, the author develops the topic via least-squares and classical matrix methods using the Cholesky decomposition to distill the essence of the Kalman filter and reveal the motivations behind the choice of the initializing state vector. He supplies pseudo-code algorithms for the various recursions, enabling code development to implement the filter in practice. The book thoroughly studies the development of modern smoothing algorithms and methods for determining initial states, along with a comprehensive development of the “diffuse” Kalman filter. Using a tiered presentation that builds on simple discussions to more complex and thorough treatments, A Kalman Filter Primer is the perfect introduction to quickly and effectively using the Kalman filter in practice.
Download or read book Mathematics of Kalman Bucy Filtering written by P.A. Ruymgaart and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their introduction in the mid 1950s, the filtering techniques developed by Kalman, and by Kalman and Bucy have been widely known and widely used in all areas of applied sciences. Starting with applications in aerospace engineering, their impact has been felt not only in all areas of engineering but also in the social sciences, biological sciences, medical sciences, as well as all other physical sciences. Despite all the good that has come out of this devel opment, however, there have been misuses because the theory has been used mainly as a tool or a procedure by many applied workers without them fully understanding its underlying mathematical workings. This book addresses a mathematical approach to Kalman-Bucy filtering and is an outgrowth of lectures given at our institutions since 1971 in a sequence of courses devoted to Kalman-Bucy filters. The material is meant to be a theoretical complement to courses dealing with applications and is designed for students who are well versed in the techniques of Kalman-Bucy filtering but who are also interested in the mathematics on which these may be based. The main topic addressed in this book is continuous-time Kalman-Bucy filtering. Although the discrete-time Kalman filter results were obtained first, the continuous-time results are important when dealing with systems developing in time continuously, which are hence more appropriately mod eled by differential equations than by difference equations. On the other hand, observations from the former can be obtained in a discrete fashion.
Download or read book Kalman Filtering and Information Fusion written by Hongbin Ma and published by Springer Nature. This book was released on 2019-11-27 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses a key technology for digital information processing: Kalman filtering, which is generally considered to be one of the greatest discoveries of the 20th century. It introduces readers to issues concerning various uncertainties in a single plant, and to corresponding solutions based on adaptive estimation. Further, it discusses in detail the issues that arise when Kalman filtering technology is applied in multi-sensor systems and/or multi-agent systems, especially when various sensors are used in systems like intelligent robots, autonomous cars, smart homes, smart buildings, etc., requiring multi-sensor information fusion techniques. Furthermore, when multiple agents (subsystems) interact with one another, it produces coupling uncertainties, a challenging issue that is addressed here with the aid of novel decentralized adaptive filtering techniques.Overall, the book’s goal is to provide readers with a comprehensive investigation into the challenging problem of making Kalman filtering work well in the presence of various uncertainties and/or for multiple sensors/components. State-of-art techniques are introduced, together with a wealth of novel findings. As such, it can be a good reference book for researchers whose work involves filtering and applications; yet it can also serve as a postgraduate textbook for students in mathematics, engineering, automation, and related fields.To read this book, only a basic grasp of linear algebra and probability theory is needed, though experience with least squares, navigation, robotics, etc. would definitely be a plus.
Download or read book Kalman Filtering written by Harold Wayne Sorenson and published by . This book was released on 1985 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: