EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Gas Turbine Heat Transfer and Cooling Technology  Second Edition

Download or read book Gas Turbine Heat Transfer and Cooling Technology Second Edition written by Je-Chin Han and published by CRC Press. This book was released on 2012-11-27 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.

Book Analysis and Comparison of Wall Cooling Schemes for Advanced Gas Turbine Applications

Download or read book Analysis and Comparison of Wall Cooling Schemes for Advanced Gas Turbine Applications written by Raymond Strong Colladay and published by . This book was released on 1972 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt: The relative performance of (1) counterflow film cooling, (2) parallel-flow film cooling, (3) convection cooling, (4) adiabatic film cooling, (5) transpiration cooling, and (6) full-coverage film cooling was investigated for heat loading conditions expected in future gas turbine engines. Assumed in the analysis were hot-gas conditions of 2200 K (3500 F) recovery temperature, 5 to 40 atmospheres total pressure, and 0.6 gas Mach number and a cooling air supply temperature of 811 K (1000 F). The first three cooling methods involve film cooling from slots. Counterflow and parallel flow describe the direction of convection cooling air along the inside surface of the wall relative to the main gas flow direction. The importance of utilizing the heat sink available in the coolant for convection cooling prior to film injection is illustrated.

Book Heat Transfer in Gas Turbines

Download or read book Heat Transfer in Gas Turbines written by Bengt Sundén and published by Witpress. This book was released on 2001 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.

Book Impingement Jet Cooling in Gas Turbines

Download or read book Impingement Jet Cooling in Gas Turbines written by R.S. Amano and published by WIT Press. This book was released on 2014-05-28 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Among the gas turbine cooling technologies, impingement jet cooling is one of the most effective in terms of cooling effectiveness, manufacturability and cost. The chapters contained in this book describe research on state-of-the-art and advanced cooling technologies that have been developed, or that are being researched, with a variety of approaches from theoretical, experimental, and CFD studies. The authors of the chapters have been selected from some of the most active researchers and scientists on the subject. This is the first to book published on the topics of gas turbines and heat transfer to focus on impingement cooling alone.

Book Prediction of Heat Transfer for a Film Cooled Flat Plate Using a Computational Fluid Dynamics Analysis

Download or read book Prediction of Heat Transfer for a Film Cooled Flat Plate Using a Computational Fluid Dynamics Analysis written by Timothy M. Schroeder and published by . This book was released on 2009 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: It has become common practice within the gas turbine industry to simulate the flow of the primary air stream and cooling gas by using the numerical method associated with Computational Fluid Dynamics (CFD). A variety of CFD programs exist in the commercial market today and within the proprietary industry environment. While most can predict the aerodynamics inside engine turbines, the ability to predict heat transfer for a film-cooled turbine stage remains elusive. The purpose of this project was to benchmark the current state of heat transfer prediction for commonly used CFD software. The commercially available code FINE/Turbo, developed by Numeca International, was tested in this research effort. FINE/Turbo was used because of its ability to provide time-accurate solutions, which will be utilized in future research efforts.

Book Conjugate Heat Transfer Effects on Gas Turbine Film Cooling

Download or read book Conjugate Heat Transfer Effects on Gas Turbine Film Cooling written by William Robb Stewart and published by . This book was released on 2014 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The efficiency of natural gas turbines is directly linked to the turbine inlet temperature, or the combustor exit temperature. Further increasing the turbine inlet temperature damages the turbine components and limits their durability. Advances in turbine vane cooling schemes protect the turbine components. This thesis studies the conjugate effects of internal cooling, film cooling and thermal barrier coatings (TBC) on turbine vane metal temperatures. Two-dimensional thermal profiles were experimentally measured downstream of a single row of film cooling holes on both an adiabatic and a matched Biot number model turbine vane. The measurements were taken as a comparison to computational simulations of the same model and flow conditions. To improve computational models of the evolution of a film cooling jet as it propagates downstream, the thermal field above the vane, not just the footprint on the vane surface must be analyzed. This study expands these data to include 2-D thermal fields above the vane at 0, 5 and 10 hole diameters downstream of the film cooling holes. In each case the computational jets remained colder than the experimental jets because they did not disperse into the mainstream as quickly. Finally, in comparing results above adiabatic and matched Biot number models, these thermal field measurements allow for an accurate analysis of whether or not the adiabatic wall temperature was a reasonable estimate of the driving temperature for heat transfer. In some cases the adiabatic wall temperature did give a good indication of the driving temperature for heat transfer while in other cases it did not. Previous tests simulating the effects of TBC on an internally and film cooled model turbine vane showed that the insulating effects of TBC dominate over variations in film cooling geometry and blowing ratio. In this study overall and external effectiveness were measured using a matched Biot number model vane simulating a TBC of thickness 0.6d, where d is the film cooing hole diameter. This new model was a 35% reduction in thermal resistance from previous tests. Overall effectiveness measurements were taken for an internal cooling only configuration, as well as for three rows of showerhead holes with a single row of holes on the pressure side of the vane. This pressure side row of holes was tested both as round holes and as round holes embedded in a realistic trench with a depth of 0.6 hole diameters. Even in the case of this thinner TBC, the insulating effects dominate over film cooling. In addition, using measurements of the convective heat transfer coefficient above the vane surface, and the thermal conductivities of the vane wall and simulated TBC material, a prediction technique of the overall effectiveness with TBC was evaluated.

Book Fluid Mechanics and Heat Transfer Research Related to High Temperature Gas Turbines

Download or read book Fluid Mechanics and Heat Transfer Research Related to High Temperature Gas Turbines written by and published by . This book was released on 1995 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of the research was to enhance the understanding of airfoil passage transport processes and film cooling by conducting a coordinated experimental and computational study of flow behavior and airfoil and end-wall surface heat transfer as influenced by turbulence and more coherent structures in the passage flow, streamline curvature, and other effects. Computation is used to evaluate and develop film cooling schemes, as well as to extend by analysis the experience base beyond the experimental cases investigated. The outcome of the research will be improved physical understanding and computational models of these processes, both of which are of direct utility to the engine designers in the aircraft industry. The research project finds a number of innovative features. They include: (a) detailed local heat (mass) transfer measurements on turbine blade surfaces, (b) investigation of the mass transfer and turbulent characteristics in curved channel flows, (c) determination of local film cooling effectiveness in endwall film cooling and total-coverage discrete hole wall cooling, (d) evaluation of a fence for endwall flow control, and (e) accurate numerical modeling in film cooling.

Book The Effects of Leading Edge and Downstream Film Cooling on Turbine Vane Heat Transfer

Download or read book The Effects of Leading Edge and Downstream Film Cooling on Turbine Vane Heat Transfer written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-07-23 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils. Hylton, L. D. and Nirmalan, V. and Sultanian, B. K. and Kaufman, R. M. Unspecified Center EQUIPMENT SPECIFICATIONS; FILM COOLING; HEAT TRANSFER; LEADING EDGES; STRUCTURAL DESIGN; VANES; AIRCRAFT ENGINES; CASCADE FLOW; DATA PROCESSING; GAS TURBINES; HIGH TEMPERATURE; PARAMETERIZATION; TWO DIMENSIONAL FLOW...

Book Heat Transfer Problems in Advanced Gas Turbines for Naval Application

Download or read book Heat Transfer Problems in Advanced Gas Turbines for Naval Application written by Ernst R. G. Eckert and published by . This book was released on 1970 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: Activities and accomplishments, up to date, are summarized which have been obtained in research on heat transfer problems in advanced gas turbines at the Heat Transfer Laboratory, School of Mechanical and Aerospace Engineering, University of Minnesota. The report discusses: Introduction; Flow and heat transfer in rotating cavities; Turbulence measurements in combustion gases; Film cooling analogy; Thermal radiation properties; Studies on turbulent shear layers; and flow through porous media. (Author).

Book Film Cooling and Aerodynamic Loss in a Gas Turbine Cascade

Download or read book Film Cooling and Aerodynamic Loss in a Gas Turbine Cascade written by Sadasuke Ito and published by . This book was released on 1991 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Film Cooling and Turbine Blade Heat Transfer

Download or read book Film Cooling and Turbine Blade Heat Transfer written by and published by . This book was released on 1982 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Measurement of Aerodynamic Losses and Internal Heat Transfer for a Gas Turbine Vane with a Gill Slot Cooled Trailing Edge

Download or read book Measurement of Aerodynamic Losses and Internal Heat Transfer for a Gas Turbine Vane with a Gill Slot Cooled Trailing Edge written by Jake Duane Johnson and published by . This book was released on 2006 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Gas Turbine Blade Cooling

Download or read book Gas Turbine Blade Cooling written by Chaitanya D Ghodke and published by SAE International. This book was released on 2018-12-10 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.