Download or read book Advanced Algebra and Calculus Made Simple written by William Richard Gondin and published by W H Allen. This book was released on 1968 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Intermediate Algebra and Analytic Geometry Made Simple written by William Richard Gondin and published by . This book was released on 1967 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Intermediate Algebra and Analytic Geometry Made Simple written by William Richard Gondin and published by . This book was released on 1959 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Complex Geometry written by Daniel Huybrechts and published by Springer Science & Business Media. This book was released on 2005 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)
Download or read book Local Analytic Geometry written by Theo de Jong and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Auf der Grundlage einer Einführung in die kommutative Algebra, algebraische Geometrie und komplexe Analysis werden zunächst Kurvensingularitäten untersucht. Daran schließen Ergebnisse an, die zum ersten Mal in einem Lehrbuch aufgenommen wurden, das Verhalten von Invarianten in Familien, Standardbasen für konvergente Potenzreihenringe, Approximationssätze, Grauerts Satz über die Existenz der versellen Deformation. Das Buch richtet sich an Studenten höherer Semester, Doktoranden und Dozenten. Es ist auf der Grundlage mehrerer Vorlesungen und Seminaren an den Universitäten in Kaiserslautern und Saarbrücken entstanden.
Download or read book Intermediate Algebra and Analytic Geometry written by William Richard Gondin and published by . This book was released on 1959 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Intermediate Algebra Analytic Geometry written by William R. Gondin and published by Elsevier. This book was released on 2014-05-12 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, systems involving quadratics, and determinants. Topics include determinants of higher order, application of Cramer's rule, second-order determinants, systems linear in quadratic terms, systems treatable by substitution, systems with a linear equation, and other systems treated by comparison. The manuscript ponders on trigonometric functions and equations, straight lines, and points, distances, and slopes, including intersection points of lines, perpendicular distances, angles between lines, positions of points, inverse trigonometric functions, and trigonometric equations. The publication is a valuable source of data for readers interested in intermediate algebra and analytic geometry.
Download or read book Algebraic Geometry written by Robin Hartshorne and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Download or read book Linear Algebra and Analytic Geometry for Physical Sciences written by Giovanni Landi and published by Springer. This book was released on 2018-05-12 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introduction to finite dimensional vector spaces, matrices, systems of linear equations, spectral analysis on euclidean and hermitian spaces, affine euclidean geometry, quadratic forms and conic sections. The mathematical formalism is motivated and introduced by problems from physics, notably mechanics (including celestial) and electro-magnetism, with more than two hundreds examples and solved exercises.Topics include: The group of orthogonal transformations on euclidean spaces, in particular rotations, with Euler angles and angular velocity. The rigid body with its inertia matrix. The unitary group. Lie algebras and exponential map. The Dirac’s bra-ket formalism. Spectral theory for self-adjoint endomorphisms on euclidean and hermitian spaces. The Minkowski spacetime from special relativity and the Maxwell equations. Conic sections with the use of eccentricity and Keplerian motions. An appendix collects basic algebraic notions like group, ring and field; and complex numbers and integers modulo a prime number.The book will be useful to students taking a physics or engineer degree for a basic education as well as for students who wish to be competent in the subject and who may want to pursue a post-graduate qualification.
Download or read book An Introduction to Analytic Geometry and Calculus written by A. C. Burdette and published by Academic Press. This book was released on 2014-05-10 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Analytic Geometry and Calculus covers the basic concepts of analytic geometry and the elementary operations of calculus. This book is composed of 14 chapters and begins with an overview of the fundamental relations of the coordinate system. The next chapters deal with the fundamentals of straight line, nonlinear equations and graphs, functions and limits, and derivatives. These topics are followed by a discussion of some applications of previously covered mathematical subjects. This text also considers the fundamentals of the integrals, trigonometric functions, exponential and logarithm functions, and methods of integration. The final chapters look into the concepts of parametric equations, polar coordinates, and infinite series. This book will prove useful to mathematicians and undergraduate and graduate mathematics students.
Download or read book Solid Analytic Geometry written by Abraham Adrian Albert and published by Courier Dover Publications. This book was released on 2016-07-19 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise text covers basics of solid analytic geometry and provides ample material for a one-semester course. Additional chapters on spherical coordinates and projective geometry suitable for longer courses or supplementary study. 1949 edition.
Download or read book Geometric Algebra written by Emil Artin and published by Courier Dover Publications. This book was released on 2016-01-20 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise classic presents advanced undergraduates and graduate students in mathematics with an overview of geometric algebra. The text originated with lecture notes from a New York University course taught by Emil Artin, one of the preeminent mathematicians of the twentieth century. The Bulletin of the American Mathematical Society praised Geometric Algebra upon its initial publication, noting that "mathematicians will find on many pages ample evidence of the author's ability to penetrate a subject and to present material in a particularly elegant manner." Chapter 1 serves as reference, consisting of the proofs of certain isolated algebraic theorems. Subsequent chapters explore affine and projective geometry, symplectic and orthogonal geometry, the general linear group, and the structure of symplectic and orthogonal groups. The author offers suggestions for the use of this book, which concludes with a bibliography and index.
Download or read book Introduction to Geometry written by Richard Rusczyk and published by Aops Incorporated. This book was released on 2007-07-01 with total page 557 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Analytic Geometry written by Douglas F. Riddle and published by Arden Shakespeare. This book was released on 1982 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This respected text makes extensive use of applications and features items such as historical vignettes to make the material useful and interesting. The text is written for the one-term analytic geometry course, often taught in sequence with college algebra, and is designed for students with a reasonably sound background in algebra, geometry, and trigonometry.
Download or read book An Introduction to Multivariable Mathematics written by Leon Simon and published by Morgan & Claypool Publishers. This book was released on 2008-07-08 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text is designed for use in a forty-lecture introductory course covering linear algebra, multivariable differential calculus, and an introduction to real analysis. The core material of the book is arranged to allow for the main introductory material on linear algebra, including basic vector space theory in Euclidean space and the initial theory of matrices and linear systems, to be covered in the first ten or eleven lectures, followed by a similar number of lectures on basic multivariable analysis, including first theorems on differentiable functions on domains in Euclidean space and a brief introduction to submanifolds. The book then concludes with further essential linear algebra, including the theory of determinants, eigenvalues, and the spectral theorem for real symmetric matrices, and further multivariable analysis, including the contraction mapping principle and the inverse and implicit function theorems. There is also an appendix which provides a nine-lecture introduction to real analysis. There are various ways in which the additional material in the appendix could be integrated into a course--for example in the Stanford Mathematics honors program, run as a four-lecture per week program in the Autumn Quarter each year, the first six lectures of the nine-lecture appendix are presented at the rate of one lecture per week in weeks two through seven of the quarter, with the remaining three lectures per week during those weeks being devoted to the main chapters of the text. It is hoped that the text would be suitable for a quarter or semester course for students who have scored well in the BC Calculus advanced placement examination (or equivalent), particularly those who are considering a possible major in mathematics. The author has attempted to make the presentation rigorous and complete, with the clarity and simplicity needed to make it accessible to an appropriately large group of students. Table of Contents: Linear Algebra / Analysis in R / More Linear Algebra / More Analysis in R / Appendix: Introductory Lectures on Real Analysis
Download or read book Advanced Calculus Revised Edition written by Lynn Harold Loomis and published by World Scientific Publishing Company. This book was released on 2014-02-26 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Download or read book Advanced Algebra written by Anthony W. Knapp and published by Springer Science & Business Media. This book was released on 2007-10-11 with total page 757 pages. Available in PDF, EPUB and Kindle. Book excerpt: Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Advanced Algebra includes chapters on modern algebra which treat various topics in commutative and noncommutative algebra and provide introductions to the theory of associative algebras, homological algebras, algebraic number theory, and algebraic geometry. Many examples and hundreds of problems are included, along with hints or complete solutions for most of the problems. Together the two books give the reader a global view of algebra and its role in mathematics as a whole.