EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Spent Nuclear Fuel Retrieval System

Download or read book Spent Nuclear Fuel Retrieval System written by Gary L. Ketner and published by . This book was released on 1997 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Interim Report Spent Nuclear Fuel Retrieval System Fuel Handling Development Testing

Download or read book Interim Report Spent Nuclear Fuel Retrieval System Fuel Handling Development Testing written by and published by . This book was released on 1997 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

Book Final Report

    Book Details:
  • Author : David R. Jackson
  • Publisher :
  • Release : 1997
  • ISBN :
  • Pages : pages

Download or read book Final Report written by David R. Jackson and published by . This book was released on 1997 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spent Nuclear Fuel Retrieval System Fuel Handling Development Testing  Final Report

Download or read book Spent Nuclear Fuel Retrieval System Fuel Handling Development Testing Final Report written by and published by . This book was released on 1997 with total page 77 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin, clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge), remove the contents from the canisters and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. This report describes fuel handling development testing performed from May 1, 1997 through the end of August 1997. Testing during this period was mainly focused on performance of a Schilling Robotic Systems' Conan manipulator used to simulate a custom designed version, labeled Konan, being fabricated for K-Basin deployment. In addition to the manipulator, the camera viewing system, process table layout, and fuel handling processes were evaluated. The Conan test manipulator was installed and fully functional for testing in early 1997. Formal testing began May 1. The purposes of fuel handling development testing were to provide proof of concept and criteria, optimize equipment layout, initialize the process definition, and identify special needs/tools and required design changes to support development of the performance specification. The test program was set up to accomplish these objectives through cold (non-radiological) development testing using simulated and prototype equipment.

Book Spent Nuclear Fuel Retrieval System

Download or read book Spent Nuclear Fuel Retrieval System written by Gary L. Ketner and published by . This book was released on 1997 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Final Report Spent Nuclear Fuel Retrieval System Primary Cleaning Development Testing

Download or read book Final Report Spent Nuclear Fuel Retrieval System Primary Cleaning Development Testing written by and published by . This book was released on 1997 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developmental testing of the primary cleaning station for spent nuclear fuel (SNF) and canisters is reported. A primary clean machine will be used to remove the gross sludge from canisters and fuel while maintaining water quality in the downstream process area. To facilitate SNF separation from canisters and minimize the impact to water quality, all canisters will be subjected to mechanical agitation and flushing with the Primary Clean Station. The Primary Clean Station consists of an outer containment box with an internally mounted, perforated wash basket. A single canister containing up to 14 fuel assemblies will be loaded into the wash basket, the confinement box lid closed, and the wash basket rotated for a fixed cycle time. During this cycle, basin water will be flushed through the wash basket and containment box to remove and entrain the sludge and carry it out of the box. Primary cleaning tests were performed to provide information concerning the removal of sludge from the fuel assemblies while in the basin canisters. The testing was also used to determine if additional fuel cleaning is required outside of the fuel canisters. Hydraulic performance and water demand requirements of the cleaning station were also evaluated. Thirty tests are reported in this document. Tests demonstrated that sludge can be dislodged and suspended sufficiently to remove it from the canister. Examination of fuel elements after cleaning suggested that more than 95% of the exposed fuel surfaces were cleaned so that no visual evidence of remained. As a result of testing, recommendations are made for the cleaning cycle. 3 refs., 16 figs., 4 tabs.

Book Final Report   Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

Download or read book Final Report Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing written by and published by . This book was released on 1999 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training.

Book Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

Download or read book Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing written by David R. Jackson and published by . This book was released on 1999 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spent Fuel Test  climax

Download or read book Spent Fuel Test climax written by and published by . This book was released on 1984 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spent Fuel Test   Climax

Download or read book Spent Fuel Test Climax written by and published by . This book was released on 1984 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Spent Fuel Test - Climax (SFT-C) is located 420 m below surface in the Climax stock granite on the Nevada Test Site. The test is being conducted as part of the Nevada Nuclear Waste Storage Investigations. Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized April-May 1980. The spent-fuel canisters were retrieved and the thermal sources were de-energized in March-April 1983 when test data indicated that test objectives were met during the 3-year storage phase. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. In addition to emplacement and retrieval operations, three exchanges of spent-fuel between the SFT-C and a surface storage facility, conducted during the storage phase, furthered this demonstration. Technical objectives of the test led to development of a technical measurements program, which is the subject of this and three previous interim reports. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the 3-1/2 year duration of the test on more than 900 channels. Data acquisition from the test is now limited to instrumentation calibration and evaluation activities. Data now available for analysis are presented here. Highlights of activities this year include a campaign of in situ stress measurements, mineralogical and petrological studies of pretest core samples, microfracture analyses of laboratory irradiated cores, improved calculations of near-field heat transfer and thermomechanical response during the final months of heating as well as during a six-month cool-down period, metallurgical analyses of selected test components, and further development of the data acquisition and data management systems. 27 references, 68 figures, 10 tables.

Book Operational and Technical Results from the Spent Fuel Test   Climax

Download or read book Operational and Technical Results from the Spent Fuel Test Climax written by and published by . This book was released on 1985 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt: The technical feasibility of short-term storage and retrieval of spent nuclear fuel assemblies has recently been demonstrated in a test of deep geologic storage at the US Department of Energy Nevada Test Site (NTS). Handling systems and procedures developed and deployed on this test functioned safely and reliably to emplace eleven intact spent-fuel assemblies and retrieve them three years later. Three exchanges of spent fuel were conducted at regular intervals during the storage period to maintain the proficiency of personnel and the readiness of the handling system. Technical data was collected using nearly 1000 instruments. These data show that the mechanical and thermal properties of granites are compatible with nuclear waste isolation objectives. Measured and calculated temperatures are in excellent agreement, confirming the adequacy of available heat transfer codes. Radiation transport calculations were of high quality, exceeding the accuracy of available long-term dosimetry techniques which were used on the test. We also found good agreement between measured and calculated displacements within the rock mass. 28 references, 4 figures.

Book Spent fuel Test Climax

Download or read book Spent fuel Test Climax written by W. C. Patrick and published by . This book was released on 1986 with total page 19 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spent Fuel Test   Climax

Download or read book Spent Fuel Test Climax written by and published by . This book was released on 1983 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Spent Fuel Test - Climax (SFT-C) is located 420 m below surface in the Climax stock granite on the Nevada Test Site. The test is being conducted for the US Department of Energy (DOE) under the technical direction of the Lawrence Livermore National Laboratory (LLNL). Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized April to May 1980, thus initiating a test with a planned 3- to 5-year fuel storage phase. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. Three exchanges of spent fuel between the SFT-C and a surface storage facility furthered this demonstration. Technical objectives of the test led to development of a technical measurements program, which is the subject of this and two previous interim reports. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the first 2-1/2 years of the test on more than 900 channels. Data continue to be acquired from the test. Some data are now available for analysis and are presented here. Highlights of activities this year include analysis of fracture data obtained during site characterization, laboratory studies of radiation effects and drilling damage in Climax granite, improved calculations of near-field heat transfer and thermomechanical response, a ventilation effects study, and further development of the data acquisition and management systems.

Book Spent Fuel Drying System Test Results  second Dry run

Download or read book Spent Fuel Drying System Test Results second Dry run written by and published by . This book was released on 1998 with total page 45 pages. Available in PDF, EPUB and Kindle. Book excerpt: The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks have been detected in the basins and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the second dry-run test, which was conducted without a fuel element. With the concurrence of project management, the test protocol for this run, and subsequent drying test runs, was modified. These modifications were made to allow for improved data correlation with drying procedures proposed under the IPS. Details of these modifications are discussed in Section 3.0.

Book Storage of Spent Nuclear Fuel

Download or read book Storage of Spent Nuclear Fuel written by International Atomic Energy Agency and published by . This book was released on 2021-04-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication is a revision by amendment of IAEA Safety Standards Series No. SSG-15 and provides recommendations and guidance on the storage of spent nuclear fuel. It covers all types of storage facility and all types of spent fuel from nuclear power plants and research reactors. It takes into consideration the longer storage periods beyond the original design lifetime of the storage facility that have become necessary owing to delays in the development of disposal facilities and the reduction in reprocessing activities. It also considers developments associated with nuclear fuel, such as higher enrichment, mixed oxide fuels and higher burnup. Guidance is provided on all stages in the lifetime of a spent fuel storage facility, from planning through siting and design to operation and decommissioning. The revision was undertaken by amending, adding and/or deleting specific paragraphs addressing recommendations and findings from studying the accident at the Fukushima Daiichi nuclear power plant in Japan.

Book Spent Nuclear Fuel Dry Transfer System Cold Demonstration Project Final Report

Download or read book Spent Nuclear Fuel Dry Transfer System Cold Demonstration Project Final Report written by and published by . This book was released on 1999 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The spent nuclear fuel dry transfer system (DTS) provides an interface between large and small casks and between storage-only and transportation casks. It permits decommissioning of reactor pools after shutdown and allows the use of large storage-only casks for temporary onsite storage of spent nuclear fuel irrespective of reactor or fuel handling limitations at a reactor site. A cold demonstration of the DTS prototype was initiated in August 1996 at the Idaho National Engineering and Environmental Laboratory (INEEL). The major components demonstrated included the fuel assembly handling subsystem, the shield plug/lid handling subsystem, the cask interface subsystem, the demonstration control subsystem, a support frame, and a closed circuit television and lighting system. The demonstration included a complete series of DTS operations from source cask receipt and opening through fuel transfer and closure of the receiving cask. The demonstration included both normal operations and recovery from off-normal events. It was designed to challenge the system to determine whether there were any activities that could be made to jeopardize the activities of another function or its safety. All known interlocks were challenged. The equipment ran smoothly and functioned as designed. A few "bugs" were corrected. Prior to completion of the demonstration testing, a number of DTS prototype systems were modified to apply lessons learned to date. Additional testing was performed to validate the modifications. In general, all the equipment worked exceptionally well. The demonstration also helped confirm cost estimates that had been made at several points in the development of the system.

Book Spent Fuel Test Climax

Download or read book Spent Fuel Test Climax written by and published by . This book was released on 1982 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Spent Fuel Test-Climax (SFT-C) is located 420 m below surface in the Climax granite stock on the Nevada Test Site. Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized from April to May 1980, initiating the 3- to 5-year-duration test. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. Technical objectives of the test led to development of a technical measurements program, which is the subject of this report. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the first 1-1/2 years of the test on more than 900 channels. Much of the acquired data are now available for analysis and are presented here. Highlights of activities this year include completion of site characterization field work, major modifications to the data acquisition and the management systems, and the addition of instrument evaluation as an explicit objective of the test.