EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Interfacial Stability and Degradation in Organic Photovoltaic Solar Cells

Download or read book Interfacial Stability and Degradation in Organic Photovoltaic Solar Cells written by William Greenbank and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic photovoltaic (OPV) solar cells show great promise but suffer from short operating lifetimes. This study examines the role that the selection of materials for the hole extraction interface in inverted OPV devices plays in determining the lifetime of a device. In the first part of the study, the effects of thermal degradation were examined. It was found that devices containing MoO3 HTLs and silver top electrodes exhibit an open-circuit voltage (VOC)/fill factor (FF)-driven mechanism. Physical characterisation experiments showed that, with heating, the silver electrode undergoes de-wetting. With thin electrodes this can result in the catastrophic failure of the device. A fracture analysis study found that silver-containing devices experience an increase in adhesion of their top layers to the active layer due to interdiffusion between the layers. This interdiffusion may be related to the loss of VOC and FF in Ag/MoO3 devices through diffused species forming charge traps in the active layer. In the second part of the study, the effects of photodegradation in different atmospheres were studied. Some material-dependent effects were observed when the devices were aged in an inert atmosphere, including variations in projected lifetime. The effect of oxygen was to greatly accelerate degradation, and remove any of the material-dependence observed in the inert experiment, while humidity led to a substantial increase in the degradation rate of devices containing PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate). This study underlines the importance of considering device lifetime in device design, and choosing materials to minimise degradation.

Book Stability and Degradation of Organic and Polymer Solar Cells

Download or read book Stability and Degradation of Organic and Polymer Solar Cells written by Frederik C. Krebs and published by John Wiley & Sons. This book was released on 2012-04-23 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic photovoltaics (OPV) are a new generation of solar cells with the potential to offer very short energy pay back times, mechanical flexibility and significantly lower production costs compared to traditional crystalline photovoltaic systems. A weakness of OPV is their comparative instability during operation and this is a critical area of research towards the successful development and commercialization of these 3rd generation solar cells. Covering both small molecule and polymer solar cells, Stability and Degradation of Organic and Polymer Solar Cells summarizes the state of the art understanding of stability and provides a detailed analysis of the mechanisms by which degradation occurs. Following an introductory chapter which compares different photovoltaic technologies, the book focuses on OPV degradation, discussing the origin and characterization of the instability and describing measures for extending the duration of operation. Topics covered include: *Chemical and physical probes for studying degradation *Imaging techniques *Photochemical stability of OPV materials *Degradation mechanisms *Testing methods *Barrier technology and applications Stability and Degradation of Organic and Polymer Solar Cells is an essential reference source for researchers in academia and industry, engineers and manufacturers working on OPV design, development and implementation.

Book Organic Solar Cells

Download or read book Organic Solar Cells written by Wallace C.H. Choy and published by Springer Science & Business Media. This book was released on 2012-11-19 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.

Book Organic Solar Cells

Download or read book Organic Solar Cells written by Wallace C.H. Choy and published by Springer. This book was released on 2012-11-17 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.

Book Organic Solar Cells

    Book Details:
  • Author : Pankaj Kumar
  • Publisher : CRC Press
  • Release : 2016-10-03
  • ISBN : 1498723306
  • Pages : 338 pages

Download or read book Organic Solar Cells written by Pankaj Kumar and published by CRC Press. This book was released on 2016-10-03 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains detailed information on the types, structure, fabrication, and characterization of organic solar cells (OSCs). It discusses processes to improve efficiencies and the prevention of degradation in OSCs. It compares the cost-effectiveness of OSCs to those based on crystalline silicon and discusses ways to make OSCs more economical. This book provides a practical guide for the fabrication, processing, and characterization of OSCs and paves the way for further development in OSC technology.

Book Identification of the Degradation Mechanisms of Organic Solar Cells

Download or read book Identification of the Degradation Mechanisms of Organic Solar Cells written by Isabel Fraga Domínguez and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Organic and Hybrid Solar Cells

Download or read book Organic and Hybrid Solar Cells written by Hui Huang and published by Springer. This book was released on 2014-11-25 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book delivers a comprehensive evaluation of organic and hybrid solar cells and identifies their fundamental principles and numerous applications. Great attention is given to the charge transport mechanism, donor and acceptor materials, interfacial materials, alternative electrodes, device engineering and physics, and device stability. The authors provide an industrial perspective on the future of photovoltaic technologies.

Book The Impact of Interfaces on the Performance of Organic Photovoltaic Cells

Download or read book The Impact of Interfaces on the Performance of Organic Photovoltaic Cells written by Roland Steim and published by KIT Scientific Publishing. This book was released on 2010 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic photovoltaic is an attractive technology to solve future energy supply scenarios. To further increase the potential of this technology novel absorber materials and interface materials have to be developed. In this work the paramount importance of interface materials for efficient as well as stable organic photovoltaic cells and modules is demonstrated. The general requirements of interface materials are elaborated and properties of a novel interface material which meets the demands are investigated experimentally and by simulations.

Book Factors Affecting Charge Collection and Photo Stability of Organic Solar Cells

Download or read book Factors Affecting Charge Collection and Photo Stability of Organic Solar Cells written by Graeme Williams and published by . This book was released on 2015 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic photovoltaics employ small molecules or polymers as their primary light absorbing materials and thus differ strongly from traditional silicon-based photovoltaics. Their primary technological benefit is a significant reduction in materials and module fabrication costs. While research on organic solar cells (OSCs) has increased dramatically in the past decade, both OSC efficiencies and device lifetimes must be improved before they can compete with existing second generation photovoltaic technologies. Many of the gains in OSC efficiency to date can be attributed to the vast and concurrent trial-and-error experiments on new donor materials and processing techniques to form traditional bulk heterojunction structures. The field is consequently lacking in predictive power, and many stipulations regarding ideal device architectures and optimal interfacial layers remain ambiguous. Furthermore, OSC lifetime is much less studied in literature compared to OSC efficiency, and fundamental studies identifying the primary mode of degradation observed in OSCs under standard operation are lacking. It is thus beneficial to systematically study charge transport and charge extraction in modern OSCs, especially as these phenomena vary over the lifetime of the OSC. This thesis comprehensively examines charge collection in OSCs as a function of OSC device architecture. To maintain a coherent test platform, vacuum-deposited OSCs are fabricated with various metal phthalocyanine donor materials and a fullerene acceptor. This is in contrast to the solution-processed OSCs that have been the focus of most OSC research since 2005. By removing complications in solution coating (especially film formation and phase separation considerations), it is significantly more straightforward to study photo-physics and charge collection behaviour. In this regard, the role of interfacial layers in charge extraction is investigated, the optimal combination/proportion of neat or mixed donor and acceptor layers in terms of the photo-active materials' properties is studied, and the impact of adding a third component to the mixed layer (i.e. ternary OSCs) is elucidated. The culmination of this work illuminates limitations in charge collection, especially in terms of the distribution of donor and acceptor material in the OSC (both in the bulk mixed layers and with regard to vertical distribution), as well as with variations made at the organic/electrode interface. The results provide guidelines to overcome device performance limitations that are pertinent for future research in both vacuum-deposited and solution-coated OSCs. Having established a strong understanding of device performance in terms of device architecture, the variations in OSC performance and associated charge collection processes are studied as they change with time and under various stress conditions (e.g. light, heat, electrical). To this end, the most critical avenues toward hindered charge collection during the operation (light exposure) of OSCs are identified. To widen the impact and applicability of this research, a systematic study on degradation phenomena for both solution-coated polymer OSCs as well as vacuum-deposited small molecule OSCs is performed. Photo-degradation phenomena in terms of the OSC device architecture are also examined. It is shown that photo-induced degradation of the organic-electrode interface is the dominant degradation mechanism in all OSCs regardless of fabrication methodology, and that the prudent selection of interfacial layers can minimize these effects. A stronger understanding of charge collection processes in as-made and photo-degraded OSCs ultimately allows for intelligent device design to grant stable and highly efficient OSCs.

Book Comprehensive Guide on Organic and Inorganic Solar Cells

Download or read book Comprehensive Guide on Organic and Inorganic Solar Cells written by Md. Akhtaruzzaman and published by Academic Press. This book was released on 2021-11-18 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive Guide on Organic and Inorganic Solar Cells: Fundamental Concepts to Fabrication Methods is a one-stop, authoritative resource on all types of inorganic, organic and hybrid solar cells, including their theoretical background and the practical knowledge required for fabrication. With chapters rigorously dedicated to a particular type of solar cell, each subchapter takes a detailed look at synthesis recipes, deposition techniques, materials properties and their influence on solar cell performance, including advanced characterization methods with materials selection and experimental techniques. By addressing the evolution of solar cell technologies, second generation thin-film photovoltaics, organic solar cells, and finally, the latest hybrid organic-inorganic approaches, this book benefits students and researchers in solar cell technology to understand the similarities, differences, benefits and challenges of each device. Introduces the basic concepts of different photovoltaic cells to audiences from a wide variety of academic backgrounds Consists of working principles of a particular category of solar technology followed by dissection of every component within the architecture Crucial experimental procedures for the fabrication of solar cell devices are introduced, aiding picture practical application of the technology

Book Organic Solar Cells

    Book Details:
  • Author : Qiquan Qiao
  • Publisher : CRC Press
  • Release : 2017-12-19
  • ISBN : 1351831216
  • Pages : 510 pages

Download or read book Organic Solar Cells written by Qiquan Qiao and published by CRC Press. This book was released on 2017-12-19 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current energy consumption mainly depends on fossil fuels that are limited and can cause environmental issues such as greenhouse gas emissions and global warming. These factors have stimulated the search for alternate, clean, and renewable energy sources. Solar cells are some of the most promising clean and readily available energy sources. Plus, the successful utilization of solar energy can help reduce the dependence on fossil fuels. Recently, organic solar cells have gained extensive attention as a next-generation photovoltaic technology due to their light weight, mechanical flexibility, and solution-based cost-effective processing. Organic Solar Cells: Materials, Devices, Interfaces, and Modeling provides an in-depth understanding of the current state of the art of organic solar cell technology. Encompassing the full spectrum of organic solar cell materials, modeling and simulation, and device physics and engineering, this comprehensive text: Discusses active layer, interfacial, and transparent electrode materials Explains how to relate synthesis parameters to morphology of the photoactive layer using molecular dynamics simulations Offers insight into coupling morphology and interfaces with charge transport in organic solar cells Explores photoexcited carrier dynamics, defect states, interface engineering, and nanophase separation Covers inorganic–organic hybrids, tandem structure, and graphene-based polymer solar cells Organic Solar Cells: Materials, Devices, Interfaces, and Modeling makes an ideal reference for scientists and engineers as well as researchers and students entering the field from broad disciplines including chemistry, material science and engineering, physics, nanotechnology, nanoscience, and electrical engineering.

Book Short term Metal organic Interface Stability Investigations of Organic Photovoltaic Devices

Download or read book Short term Metal organic Interface Stability Investigations of Organic Photovoltaic Devices written by Mathew O. Reese and published by . This book was released on 2008 with total page 3 pages. Available in PDF, EPUB and Kindle. Book excerpt: As organic photovoltaic (OPV) devices have begun to move toward initial applications, issues of their stability become increasingly of interest. The de facto standard OPV devices are made from a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM); these serve as a test bed for lifetime testing. As delamination, oxidation, and chemical interactions at the metal electrode/organic interface have long been posited as a degradation pathway in organic electronic devices, two short-term experiments were employed to evaluate the stability of this interface in the light and dark. Devices and separate organic surfaces were stable in air over the course of 10's of minutes while in the dark. While devices were stable in air for 100 minutes under constant one sun illumination, the organic surface was not and good devices could not be made on it subsequently.

Book Photovoltaics

Download or read book Photovoltaics written by Heinrich Häberlin and published by John Wiley & Sons. This book was released on 2012-01-05 with total page 793 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the explosive growth in PV (photovoltaic) installations globally, the sector continues to benefit from important improvements in manufacturing technology and the increasing efficiency of solar cells, this timely handbook brings together all the latest design, layout and construction methods for entire PV plants in a single volume. Coverage includes procedures for the design of both stand-alone and grid-connected systems as well as practical guidance on typical operational scenarios and problems encountered for optimum PV plant performance. This comprehensive resource will benefit electrical engineer and other electrical professionals in PV systems, especially designers and installers of PV plants or the product manufacturing and testing supply chain. Advanced students on renewable energy courses will find this useful background reading and it will be an invaluable desk reference for PV plant builders and owners.

Book Thermal Stability of Slot die Coated Organic Photovoltaics

Download or read book Thermal Stability of Slot die Coated Organic Photovoltaics written by Bradley Kirk and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a large amount of interest towards the commercialisation of flexible solar cells, with several types that have gained traction, one such being organic photovoltaics (OPVs). Improving solar cell efficiency has dominated the OPV research field for several years, however, there has been less research aimed towards device stability, resulting majority of devices having poor lifetime under ambient and operating conditions. There has been even less research focused on the shift from research on lab-based spin-coated OPVs fabricated under protective nitrogen conditions to scalable and large-scale devices fabricated via coating/printing techniques under ambient conditions. This has led to the majority of OPV stability research to focus on reducing the degradation of bulk heterojunction (BHJ) of the active layer, with strategies for improving stability previously aimed at small-scale solar cells fabricated under nitrogen environment. -- This thesis work has aimed at understanding the major thermal degradation pathways associated with slot-die polymer:fullerene-based OPV, with two temperatures being investigated, 85 °C and 120 °C. 85 °C is a thermal aging temperature that is accepted by the International Summit on OPV Stability (ISOS) community used for thermal degradation studies under dark storage conditions. Whereas 120 °C is one of several “accelerated” thermal aging temperatures that have been implemented in in previous literature to increase the degradation rate. From our work, however, it was found that the two temperatures led to completely different degradation pathways, with 85 °C resulting in significant phase changes in the active layer, while 120 °C resulted in fullerene crystallisation and migration. -- With this important observation in degradation pathway, a range of solid-based additives were extensively investigated, from neat fullerenes, cyclic-based small molecules and an insulating polymer, all having either been speculated to, or shown in previous literature to decrease thermal aging of the active layer. Though additives such as Piperazine (PP), 4,4'-Bipiperidine (BP) and Polyacenaphthylene (PAN) were observed to reduce the crystallisation rate at 120 °C, the additives had a negative impact on degradation at 85 °C as they allowed for the formation of fullerene crystals that would otherwise have been observed at the lower temperature. Whereas for neat C70, it was found to improve thermal stability at 120 °C and 85 °C, due to its ability to influence the thermal behaviour of the active layer itself. -- Lastly, the thesis work aimed at demonstrating the scalability and translatability of the previously conducted work, using a device structure that has been demonstrated in roll-to-roll fabrication. For the additives that have been investigated in the thesis, they were found to have a negative impact on thermal degradation of the OPV devices, where it is was suspected that by influencing the thermal behaviour and morphology of the active layer had led to increased interfacial degradation. -- The work conducted in the thesis demonstrates a strategy, by implementing several spectroscopy, microscopy, and material analysis methods together, for investigating morphological changes associated with thermal degradation of the active layer of OPVs. The work has also shown the importance of investigating thermal degradation at appropriate annealing temperatures of OPVs, as well as further challenges associated with scalability and translatability between scalable and large-scale OPV fabrication.

Book Organic Solar Cells

    Book Details:
  • Author : Barry P. Rand
  • Publisher : CRC Press
  • Release : 2014-08-26
  • ISBN : 9814463655
  • Pages : 812 pages

Download or read book Organic Solar Cells written by Barry P. Rand and published by CRC Press. This book was released on 2014-08-26 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic photovoltaic (OPV) cells have the potential to make a significant contribution to the increasing energy needs of the future. In this book, 15 chapters written by selected experts explore the required characteristics of components present in an OPV device, such as transparent electrodes, electron- and hole-conducting layers, as well as electron donor and acceptor materials. Design, preparation, and evaluation of these materials targeting highest performance are discussed. This includes contributions on modeling down to the molecular level to device-level electrical and optical testing and modeling, as well as layer morphology control and characterization. The integration of the different components in device architectures suitable for mass production is described. Finally, the technical feasibility and economic viability of large-scale manufacturing using fast inexpensive roll-to-roll deposition technologies is assessed.

Book Polymeric Solar Cells

Download or read book Polymeric Solar Cells written by Frederik C. Krebs and published by DEStech Publications, Inc. This book was released on 2010 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Book offers a comprehensive treatment of nonhybrid polymeric solar cells from the basic chemistry of donor and acceptor materials through device design, processing and manufacture. Written by a team of Europe-based experts, the text shows the steps and strategies of successfully moving from the science of solar cells to commercial device production. Chapters focus on technologies that lead to increased efficiencies, longer usable life and lower costs. Highlighted are ways to fabricate solar cells from a range of polymers and develop them into marketable commodities. Special consideration is given to solar cells as intellectual property.

Book Interfacial Engineering in Functional Materials for Dye Sensitized Solar Cells

Download or read book Interfacial Engineering in Functional Materials for Dye Sensitized Solar Cells written by Alagarsamy Pandikumar and published by John Wiley & Sons. This book was released on 2019-12-12 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers an Interdisciplinary approach to the engineering of functional materials for efficient solar cell technology Written by a collection of experts in the field of solar cell technology, this book focuses on the engineering of a variety of functional materials for improving photoanode efficiency of dye-sensitized solar cells (DSSC). The first two chapters describe operation principles of DSSC, charge transfer dynamics, as well as challenges and solutions for improving DSSCs. The remaining chapters focus on interfacial engineering of functional materials at the photoanode surface to create greater output efficiency. Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells begins by introducing readers to the history, configuration, components, and working principles of DSSC It then goes on to cover both nanoarchitectures and light scattering materials as photoanode. Function of compact (blocking) layer in the photoanode and of TiCl4 post-treatment in the photoanode are examined at next. Next two chapters look at photoanode function of doped semiconductors and binary semiconductor metal oxides. Other chapters consider nanocomposites, namely, plasmonic nanocomposites, carbon nanotube based nanocomposites, graphene based nanocomposites, and graphite carbon nitride based nanocompositesas photoanodes. The book: Provides comprehensive coverage of the fundamentals through the applications of DSSC Encompasses topics on various functional materials for DSSC technology Focuses on the novel design and application of materials in DSSC, to develop more efficient renewable energy sources Is useful for material scientists, engineers, physicists, and chemists interested in functional materials for the design of efficient solar cells Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells will be of great benefit to graduate students, researchers and engineers, who work in the multi-disciplinary areas of material science, engineering, physics, and chemistry.