Download or read book Interactive Applications Using Matplotlib written by Benjamin V. Root and published by Packt Publishing Ltd. This book was released on 2015-03-24 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for Python programmers who want to do more than just see their data. Experience with GUI toolkits is not required, so this book can be an excellent complement to other GUI programming resources.
Download or read book Interactive Applications Using Matplotlib written by Benjamin V. Root and published by . This book was released on 2015-03-24 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for Python programmers who want to do more than just see their data. Experience with GUI toolkits is not required, so this book can be an excellent complement to other GUI programming resources.
Download or read book Python Data Science Handbook written by Jake VanderPlas and published by "O'Reilly Media, Inc.". This book was released on 2016-11-21 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Download or read book Interactive Data Visualization with Python written by Abha Belorkar and published by Packt Publishing Ltd. This book was released on 2020-04-14 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Create your own clear and impactful interactive data visualizations with the powerful data visualization libraries of Python Key FeaturesStudy and use Python interactive libraries, such as Bokeh and PlotlyExplore different visualization principles and understand when to use which oneCreate interactive data visualizations with real-world dataBook Description With so much data being continuously generated, developers, who can present data as impactful and interesting visualizations, are always in demand. Interactive Data Visualization with Python sharpens your data exploration skills, tells you everything there is to know about interactive data visualization in Python. You'll begin by learning how to draw various plots with Matplotlib and Seaborn, the non-interactive data visualization libraries. You'll study different types of visualizations, compare them, and find out how to select a particular type of visualization to suit your requirements. After you get a hang of the various non-interactive visualization libraries, you'll learn the principles of intuitive and persuasive data visualization, and use Bokeh and Plotly to transform your visuals into strong stories. You'll also gain insight into how interactive data and model visualization can optimize the performance of a regression model. By the end of the course, you'll have a new skill set that'll make you the go-to person for transforming data visualizations into engaging and interesting stories. What you will learnExplore and apply different interactive data visualization techniquesManipulate plotting parameters and styles to create appealing plotsCustomize data visualization for different audiencesDesign data visualizations using interactive librariesUse Matplotlib, Seaborn, Altair and Bokeh for drawing appealing plotsCustomize data visualization for different scenariosWho this book is for This book intends to provide a solid training ground for Python developers, data analysts and data scientists to enable them to present critical data insights in a way that best captures the user's attention and imagination. It serves as a simple step-by-step guide that demonstrates the different types and components of visualization, the principles, and techniques of effective interactivity, as well as common pitfalls to avoid when creating interactive data visualizations. Students should have an intermediate level of competency in writing Python code, as well as some familiarity with using libraries such as pandas.
Download or read book Matplotlib for Python Developers written by Sandro Tosi and published by Packt Publishing Ltd. This book was released on 2009-11-09 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a practical, hands-on book, with a lot of code and images. It presents the real code that generates every image and describes almost every single line of it, so that you know exactly what's going on. Introductory, descriptive, and theoretical parts are mixed with examples, so that reading and understanding them is easy. All of the examples build gradually with code snippets, their explanations, and plot images where necessary with the complete code and output presented at the end. This book is essentially for Python developers who have a good knowledge of Python; no knowledge of Matplotlib is required. You will be creating 2D plots using Matplotlib in no time at all.
Download or read book Matplotlib 3 0 Cookbook written by Srinivasa Rao Poladi and published by Packt Publishing Ltd. This book was released on 2018-10-23 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build attractive, insightful, and powerful visualizations to gain quality insights from your data Key FeaturesMaster Matplotlib for data visualizationCustomize basic plots to make and deploy figures in cloud environmentsExplore recipes to design various data visualizations from simple bar charts to advanced 3D plotsBook Description Matplotlib provides a large library of customizable plots, along with a comprehensive set of backends. Matplotlib 3.0 Cookbook is your hands-on guide to exploring the world of Matplotlib, and covers the most effective plotting packages for Python 3.7. With the help of this cookbook, you'll be able to tackle any problem you might come across while designing attractive, insightful data visualizations. With the help of over 150 recipes, you'll learn how to develop plots related to business intelligence, data science, and engineering disciplines with highly detailed visualizations. Once you've familiarized yourself with the fundamentals, you'll move on to developing professional dashboards with a wide variety of graphs and sophisticated grid layouts in 2D and 3D. You'll annotate and add rich text to the plots, enabling the creation of a business storyline. In addition to this, you'll learn how to save figures and animations in various formats for downstream deployment, followed by extending the functionality offered by various internal and third-party toolkits, such as axisartist, axes_grid, Cartopy, and Seaborn. By the end of this book, you'll be able to create high-quality customized plots and deploy them on the web and on supported GUI applications such as Tkinter, Qt 5, and wxPython by implementing real-world use cases and examples. What you will learnDevelop simple to advanced data visualizations in Matplotlib Use the pyplot API to quickly develop and deploy different plots Use object-oriented APIs for maximum flexibility with the customization of figuresDevelop interactive plots with animation and widgets Use maps for geographical plotting Enrich your visualizations using embedded texts and mathematical expressionsEmbed Matplotlib plots into other GUIs used for developing applicationsUse toolkits such as axisartist, axes_grid1, and cartopy to extend the base functionality of MatplotlibWho this book is for The Matplotlib 3.0 Cookbook is for you if you are a data analyst, data scientist, or Python developer looking for quick recipes for a multitude of visualizations. This book is also for those who want to build variations of interactive visualizations.
Download or read book Geospatial Application Development Using Python Programming written by Galety, Mohammad Gouse and published by IGI Global. This book was released on 2024-05-16 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Academics and researchers currently grapple with a pressing issue; the demand for precise and insightful geographical information has surged across various fields, encompassing urban planning, environmental monitoring, agriculture, and disaster management. This surge has revealed a substantial knowledge gap, underscoring the need for effective applications that can bridge the gap between cutting-edge technologies and practical usage. Geospatial Application Development Using Python Programming emerges as the definitive solution to this challenge. This comprehensive book equips academics, researchers, and professionals with the essential tools and insights required to leverage the capabilities of Python programming in the realm of spatial analysis. It goes beyond merely connecting these two realms; it actively fosters their collaboration. By advancing knowledge in spatial sciences and highlighting Python's pivotal role in data analysis and application development, this book plays a crucial part in addressing the challenge of effectively harnessing geographical data.
Download or read book DIGITAL VIDEO PROCESSING PROJECTS USING PYTHON AND TKINTER written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2024-03-23 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first project is a video player application with an additional feature to compute and display the MD5 hash of each frame in a video. The user interface is built using Tkinter, a Python GUI toolkit, providing buttons for opening a video file, playing, pausing, and stopping the video playback. Upon opening a video file, the application displays metadata such as filename, duration, resolution, FPS, and codec information in a table. The video can be navigated using a slider to seek to a specific time point. When the video is played, the application iterates through each frame, extracts it from the video clip, calculates its MD5 hash, and displays the frame along with its histogram and MD5 hash. The histogram represents the pixel intensity distribution of each color channel (red, green, blue) in the frame. The computed MD5 hash for each frame is displayed in a label below the video frame. Additionally, the frame hash along with its index is saved to a text file for further analysis or verification purposes. The class encapsulates the functionality of the application, providing methods for opening a video file, playing and controlling video playback, updating metadata, computing frame histogram, plotting histogram, calculating MD5 hash for each frame, and saving frame hashes to a file. The main function initializes the Tkinter root window, instantiates the class, and starts the Tkinter event loop to handle user interactions and update the GUI accordingly. The second project is a video player application with additional features for frame extraction and visualization of RGB histograms for each frame. Developed using Tkinter, a Python GUI toolkit, the application provides functionalities such as opening a video file, playing, pausing, and stopping video playback. The user interface includes buttons for controlling video playback, a combobox for selecting zoom scale, an entry for specifying a time point to jump to, and buttons for frame extraction and opening another instance of the application. Upon opening a video file, the application loads it using the imageio library and displays the frames in a canvas. Users can play, pause, and stop the video using dedicated buttons. The zoom scale can be adjusted, and the video can be navigated using scrollbar or time entry. Additionally, users can extract a specific frame by entering its frame number, which opens a new window displaying the extracted frame along with its RGB histograms and MD5 hash value. The class encapsulates the application's functionalities, including methods for opening a video file, playing/pausing/stopping video, updating zoom scale, displaying frames, handling mouse events for dragging and scrolling, jumping to a specified time, and extracting frames. The main function initializes the Tkinter root window and starts the application's event loop to handle user interactions and update the GUI accordingly. Users can also open multiple instances of the application simultaneously to work with different video files concurrently. The third project is a GUI application built with Tkinter for calculating hash values of video frames and displaying them in a listbox. The interface consists of different frames for video display and hash values, along with buttons for controlling video playback, calculating hashes, saving hash values to a file, and opening a new instance of the application. Users can open a video file using the "Open Video" button, after which they can play, pause, or stop the video using corresponding buttons. Upon opening a video file, the application reads frames from the video capture and displays them in the designated frame. Users can interact with the video using playback buttons to control the video's flow. Hash values for each frame are calculated using various hashing algorithms such as MD5, SHA-1, SHA-256, and others. These hash values are then displayed in the listbox, allowing users to view the hash values corresponding to each algorithm. Additionally, users can save the calculated hash values to a text file by clicking the "Save Hashes" button, providing a convenient way to store and analyze the hash data. Lastly, users can open multiple instances of the application simultaneously by clicking the "Open New Instance" button, facilitating concurrent processing of different video files. The fourth project is a GUI application developed using Tkinter for analyzing video frames through frame hashing and histogram visualization. The interface presents a canvas for displaying the video frames along with control buttons for video playback, frame extraction, and zoom control. Users can open a video file using the "Open Video" button, and the application provides functionality to play, pause, and stop the video playback. Additionally, users can jump to specific time points within the video using the time entry field and "Jump to Time" button. Upon extracting a frame, the application opens a new window displaying the selected frame along with its histogram and multiple hash values calculated using various algorithms such as MD5, SHA-1, SHA-256, and others. The histogram visualization presents the distribution of pixel values across the RGB channels, aiding in the analysis of color composition within the frame. The hash values are displayed in a listbox within the frame extraction window, providing users with comprehensive information about the frame's content and characteristics. Furthermore, users can open multiple instances of the application simultaneously, enabling concurrent analysis of different video files. The fifth project implements a video player application with edge detection capabilities using various algorithms. The application is designed using the Tkinter library for the graphical user interface (GUI). Upon execution, the user is presented with a window containing control buttons and panels for displaying the video and extracted frames. The main functionalities of the application include opening a video file, playing, pausing, and stopping the video playback. Additionally, users can jump to a specific time in the video, extract frames, and open another instance of the video player application. The video playback is displayed on a canvas, allowing for zooming in and out using a combobox to adjust the scale. One of the key features of this application is the ability to perform edge detection on frames extracted from the video. When a frame is extracted, the application displays the original frame alongside its edge detection result using various algorithms such as Canny, Sobel, Prewitt, Laplacian, Scharr, Roberts, FreiChen, Kirsch, Robinson, Gaussian, or no edge detection. Histogram plots for each RGB channel of the frame are also displayed, along with hash values computed using different hashing algorithms for integrity verification. The edge detection result and histogram plots are updated dynamically based on the selected edge detection algorithm. Overall, this application provides a convenient platform for visualizing video content and performing edge detection analysis on individual frames, making it useful for tasks such as video processing, computer vision, and image analysis. The sixth project is a Python application built using the Tkinter library for creating a graphical user interface (GUI) to play videos and apply various filtering techniques to individual frames. The application allows users to open video files in common formats such as MP4, AVI, and MKV. Once a video is opened, users can play, pause, stop, and jump to specific times within the video. The GUI consists of two main panels: one for displaying the video and another for control buttons. The video panel contains a canvas where the frames of the video are displayed. Users can zoom in or out on the video frames using a combobox, and they can also scroll horizontally through the video using a scrollbar. Control buttons such as play/pause, stop, extract frame, and open another video player are provided in the control panel. When a frame is extracted, the application opens a new window displaying the extracted frame along with options to apply various filtering methods. These methods include Gaussian blur, mean blur, median blur, bilateral filtering, non-local means denoising, anisotropic diffusion, total variation denoising, Wiener filter, adaptive thresholding, and wavelet transform. Users can select a filtering method from a dropdown menu, and the filtered result along with the histogram and hash values of the frame are displayed in real-time. The application also provides functionality to open another instance of the video player, allowing users to work with multiple videos simultaneously. Overall, this project provides a user-friendly interface for playing videos and applying filtering techniques to individual frames, making it useful for tasks such as video processing, analysis, and editing.
Download or read book Python for Artificial Intelligence and Data Science written by Mr.G.Hubert and published by SK Research Group of Companies. This book was released on 2024-09-10 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mr.G.Hubert, Assistant Professor & Head, Department of Artificial Intelligence, S.I.V.E.T. College, Chennai, Tamil Nadu, India. Dr.Sowmya Naik.P.T, Professor & Head, Department of Computer Science and Engineering, City Engineering College, Bengaluru, Karnataka, India. Dr.Ambika.P.R, Professor, Department of Computer Science and Engineering, City Engineering College, Bengaluru, Karnataka, India. Mrs.Laxmi.M.C, Assistant Professor, Department of Computer Science and Engineering, City Engineering College, Bengaluru, Karnataka, India.
Download or read book Create GUI Applications with Python Qt6 PySide6 Edition written by Martin Fitzpatrick and published by Martin Fitzpatrick. This book was released on 2021-03-01 with total page 809 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building desktop applications doesn't have to be difficult. Using Python & Qt5 you can create fully functional desktop apps in minutes. This is the 5th Edition of Create GUI Applications, updated for 2021 & PySide6 Starting from the very basics, this book takes you on a tour of the key features of PySide6 you can use to build real-life applications. Learn the fundamental building blocks of PySide6 applications — Widgets, Layouts & Signals and learn how PySide uses the event loop to handle and respond to user input. Design beautiful UIs with Qt Designer and customize the look and feel of your applications with Qt Style Sheets and custom widgets. Use Qt's MVC-like ModelViews framework to connect data sources to your widgets, including SQL databases, numpy and pandas data tables, to build-data driven application. Visualize data using matplotlib & PyQtGraph and connect with external data sources to build live dashboards. Learn how to use threads and processes to manage long-running tasks and communicate with external services. Parse data and visualize the output in logs and progress bars. The book includes usability and architectural tips to help you build maintainable and usable PySide6 applications from the start. - 665 pages of hands-on PySide6 exercises - 211 code examples to experiment with - Includes 4 example apps - Compatible with Python 3.6+ - Code free to reuse in your own projects
Download or read book Multidisciplinary Applications of AI Robotics and Autonomous Systems written by Choudhury, Tanupriya and published by IGI Global. This book was released on 2024-06-24 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: As society transitions into the digital age, the demand for advanced robotics and autonomous systems has remained unchanged. However, the field faces significant challenges bridging the gap between current capabilities and the potential for brilliant, autonomous machines. While exact and efficient, current robotic systems need more sophistication and adaptability of human intelligence. This limitation restricts their application in complex and dynamic environments, hindering their ability to realize their potential fully. Multidisciplinary Applications of AI Robotics and Autonomous Systems addresses these challenges by presenting cutting-edge research and innovative robotics and autonomous systems solutions. By exploring topics such as digital transformation, IoT, AI, and cloud-native computing paradigms, readers will understand the latest advancements in the field. The book delves into theoretical frameworks, computational models, and experimental approaches, offering insights to help researchers and practitioners develop more intelligent and autonomous machines.
Download or read book DATAFRAME MANIPULATION THEORY AND APPLICATIONS WITH PYTHON AND TKINTER written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2024-08-13 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: A DataFrame is a fundamental data structure in pandas, a powerful Python library for data manipulation and analysis, designed to handle two-dimensional, labeled data akin to a spreadsheet or SQL table. It simplifies working with tabular data by supporting various operations like filtering, sorting, grouping, and aggregating. DataFrames are easily created from lists, dictionaries, or NumPy arrays and offer flexible data handling, including managing missing values and performing input/output operations with different file formats. Key features include hierarchical indexing for multi-level grouping, time series functionality, and integration with libraries such as NumPy and Matplotlib. DataFrame manipulation encompasses filtering, sorting, merging, grouping, pivoting, and reshaping data, while also allowing custom functions, handling missing data, and managing data types. Mastering these techniques is crucial for efficient data analysis, ensuring clean, transformed data ready for deeper insights and decision-making. In chapter 2, in the first project, we filter a DataFrame named employee_data, which includes columns like 'Name', 'Department', 'Age', 'Salary', and 'Years_Worked', to find employees in the 'Engineering' department with a salary exceeding $70,000. We create the DataFrame using sample data and apply boolean indexing to achieve this. The boolean masks employee_data['Department'] == 'Engineering' and employee_data['Salary'] > 70000 identify rows meeting each condition. Combining these masks with the & operator filters the DataFrame to include only those rows where both conditions are met, resulting in a subset of employees who fit the criteria. The final output displays this filtered DataFrame. In second project, we filter a DataFrame named sales_data, which includes columns such as 'Product', 'Category', 'Quantity Sold', 'Unit Price', and 'Total Revenue', to find products in the 'Electronics' category with quantities sold exceeding 100. We use boolean indexing to achieve this: sales_data['Category'] == 'Electronics' creates a mask for rows in the 'Electronics' category, while sales_data['Quantity_Sold'] > 100 identifies rows where quantities sold are above 100. By combining these masks with the & operator, we filter the DataFrame to include only rows meeting both conditions. The final output displays this filtered subset of products. In third project, we filter a DataFrame named movie_data, which includes columns such as 'Title', 'Genre', 'Release Year', 'Rating', and 'Box Office Earnings', to find movies released after 2010 with a rating above 8. We use boolean indexing where movie_data['Release_Year'] > 2010 creates a mask for movies released after 2010, and movie_data['Rating'] > 8 identifies movies with ratings higher than 8. By combining these masks with the & operator, we filter the DataFrame to include only the rows meeting both conditions. The final output displays the subset of movies that fit these criteria. The fourth project demonstrates a Tkinter-based GUI application for filtering a sales dataset using Python libraries Tkinter, Pandas, and PandasTable. The application allows users to interact with a table displaying sales data, applying filters based on product category and quantity sold. The filter_data() function updates the table to show only items from the selected category with quantities exceeding the specified value, while the refresh_data() function resets the table to display the original dataset. The GUI includes input fields for category selection and quantity entry, along with buttons for filtering and refreshing. The sales data is initially presented in a PandasTable with a toolbar and status bar. Users interact with the interface, which updates and displays filtered data or the full dataset as needed. The fifth project features a Tkinter GUI application that lets users filter a movie dataset by minimum release year and rating using Python libraries Tkinter, Pandas, and PandasTable. The filter_data() function updates the displayed table based on user inputs, while the refresh_data() function resets it to show the original dataset. The GUI includes fields for entering minimum release year and rating, buttons for filtering and refreshing, and a PandasTable for displaying the data. The application allows for interactive data filtering and visualization, with the table initially populated with sample movie data. In the sixth project, a retail store manager uses a DataFrame containing sales data to identify products that are both popular and profitable. By applying logical operators to filter the DataFrame, the goal is to isolate products that have sold more than 100 units and generated revenue exceeding $5000. This filtering is achieved using the Pandas library in Python, where the & operator combines conditions to select the relevant rows. The resulting DataFrame, which includes only products meeting both criteria, provides insights for decision-making and analysis in retail management. The seventh project involves creating a Tkinter-based GUI application to manage and visualize sales data. The GUI displays data in a table and a bar graph, allowing users to filter products based on minimum quantity sold and total revenue. The application uses pandas for data manipulation, pandastable for table display, and matplotlib for the bar graph. The GUI consists of an input frame for user filters and a display frame for showing the table and graph side by side. Users can update the table and graph by clicking "Filter Data" or reset them to the original data with the "Refresh" button, providing an interactive way to analyze sales performance. In chapter three, the first project demonstrates how to sort synthetic financial data for analysis. The code imports libraries, sets random seeds for reproducibility, and generates data for businesses including revenue and expenses. It then creates a DataFrame with this data, sorts it by monthly revenue in descending order, and saves the sorted DataFrame to an Excel file. This process aids in organizing and analyzing financial data, making it easier to identify top-performing businesses. The second project creates a Tkinter GUI to view and interact with synthetic financial data, displaying monthly revenue and expenses for various businesses. It generates random data, stores it in a DataFrame, and sets up a GUI with two tabs: one for sorting by revenue and another for expenses. Each tab features a table to display the data and a matplotlib plot for visual representation. The GUI allows users to sort and view data dynamically, with alternating row colors for readability and embedded plots for better analysis. The third project generates synthetic unemployment data for 10 regions over 5 years, sets random seeds for reproducibility, and creates a DataFrame with the data. It then sorts the DataFrame alphabetically by region and saves it to an Excel file named "synthetic_unemployment_data.xlsx". Finally, the script prints a confirmation message indicating that the data has been successfully saved. The fourth project generates synthetic unemployment data for 25 regions over a 5-year period and creates a Tkinter GUI for interactive data exploration. The data, organized into a DataFrame and saved to an Excel file, is displayed in a tabbed interface with two views: one sorted by unemployment rate and another by year. Each tab features scrollable tables and corresponding bar charts for visual analysis. The UnemploymentDataGUI class manages the interface, updating tables and graphs dynamically to allow users to explore regional and yearly unemployment variations effectively. The fifth project demonstrates how to concatenate dataframes with synthetic temperature data for various countries. Initially, we generate temperature data for countries like the USA and Canada for each month. Next, we create an additional dataframe with temperature data for other countries such as the UK and Germany. We then concatenate the original and additional dataframes into a single dataframe and save the combined data to an Excel file named combined_temperatures.xlsx. The steps involve generating synthetic data, creating additional dataframes, concatenating them, and exporting the result to Excel. The sixth project demonstrates how to build a Tkinter application to visualize synthetic temperature data. The app features a tabbed interface with tabs for displaying raw data, temperature graphs, and filters. It uses alternating row colors for better readability and includes functionality for filtering data by country and month. Users can view and analyze temperature data across different countries through tables and graphical representations, and apply or reset filters as needed. The seventh project demonstrates how to perform an inner join on two synthetic dataframes: one containing housing details and the other containing owner information. First, synthetic data is generated for houses and their owners. The dataframes are then merged on the common key, HouseID, using an inner join to include only rows with matching keys. Finally, the combined data is saved to an Excel file named combined_housing_data.xlsx. The result is an Excel file that contains details about houses along with their respective owners. The eight project provides an interactive platform for managing and visualizing synthetic housing data. Users can view comprehensive tables, apply filters for location and house type, and analyze house price distributions with Matplotlib plots. The application includes tabs for displaying data, filtering results, and generating visualizations, with functionalities to reset filters, save filtered data to Excel, and ensure a user-friendly experience with alternating row colors in tables and dynamic updates. To demonstrate an outer join on DataFrames with synthetic medical data, in ninth project, we create two DataFrames: one for patient information and another for medical records. We then perform an outer join to ensure all patients and records are included, even if some records don't have corresponding patient data. The code generates synthetic data, performs the outer join using pd.merge() on the PatientID column, and saves the result to an Excel file named outer_join_medical_data.xlsx. This approach provides a comprehensive dataset with complete patient and medical record information. The tenth project involves creating a Tkinter-based desktop application to visualize and interact with synthetic medical data. The application uses an outer join to merge patient and medical record datasets, displaying the comprehensive result in a user-friendly table. Users can filter data by patient ID and condition, view distribution graphs of medical conditions, and save filtered results to an Excel file. The GUI, leveraging Tkinter and Matplotlib, includes tabs for data display, filtering, and graph visualization, providing a robust tool for exploring medical datasets. In chapther four, the first project demonstrates creating and manipulating a synthetic insurance dataset. Using numpy and pandas, the script generates random data including columns for Policyholder, Age, State, Coverage_Type, and Premium. It groups this data by State and Coverage_Type to show basic data segmentation, then saves the dataset to an Excel file for further analysis. The code provides a practical framework for simulating and analyzing insurance data by illustrating the process of data creation, grouping, and storage. The second project demonstrates a Tkinter GUI application designed for analyzing a synthetic insurance dataset. The GUI displays 1,000 records of policyholder data in a scrollable table using the Treeview widget, with options to filter by state and coverage type. Users can save filtered data to an Excel file and generate a bar plot of policy distribution by state, integrated into the Tkinter window using Matplotlib. This application provides interactive tools for data exploration, filtering, exporting, and visualization in a user-friendly interface. The third project focuses on creating, analyzing, and aggregating a large synthetic sales dataset with 10,000 records. This dataset includes salespersons, regions, products, sales amounts, and timestamps, simulating a detailed sales environment. The core task involves grouping the data by region, product, and salesperson to calculate total sales and transaction counts. This aggregated data is saved to an Excel file, providing insights into sales performance and trends, which helps businesses optimize their sales strategies and make informed decisions. The fourth project develops a Tkinter GUI for analyzing synthetic sales data, allowing users to explore raw and aggregated data interactively. The application includes a dual-view setup with raw and aggregated data tables, filtering options for region, product, and salesperson, and visualization features for generating plots. Users can apply filters, view data summaries, save results to Excel, and visualize sales trends by region. The GUI is designed to provide a comprehensive tool for data analysis, visualization, and reporting. The dataset includes 10,000 records with attributes such as salesperson, region, product, sales amount, and date, and is grouped by region, product, and salesperson to aggregate sales data. The fifth project demonstrates how to create and analyze a synthetic transportation dataset. The code generates a large dataset simulating vehicle and route data, including distances traveled and durations. It groups the data by vehicle and route, calculating total and average distances and durations, and then saves these aggregated results to an Excel file. This approach allows for detailed examination of transportation patterns and performance metrics, facilitating reporting and decision-making. The sixth project outlines a Tkinter GUI project for analyzing synthetic transportation data using Python. This GUI, combining Tkinter and Matplotlib, provides a user-friendly interface to inspect and visualize large datasets involving vehicle routes, distances, and durations. It features interactive tables for raw and aggregated data, filter options for vehicle, route, and date, and integrates various plots like histograms and bar charts for data visualization. Users can apply filters, view dynamic updates, and save filtered data to Excel. The goal is to facilitate comprehensive data analysis and enhance decision-making through an intuitive, interactive tool. In chapter five, the first project involves generating and analyzing a synthetic dataset representing gold production across countries, years, and regions. The dataset, created with attributes like country, year, region, and production quantities, simulates complex real-world data for detailed analysis. By using the pivot_table method, the data is transformed to aggregate gold production metrics by country and region over different years, revealing trends and patterns. The results are saved as both original and pivoted datasets in Excel files for easy access and further analysis, aiding in decision-making related to mining and resource management. The second project creates an interactive Tkinter GUI to visualize and interact with a large synthetic dataset on gold production, including details on countries, regions, mines, and yearly production. Using pandas and numpy to generate the dataset, the GUI features multiple tabs for viewing the original data, pivoted data, and various summary statistics, alongside graphical visualizations of gold production trends across countries, regions, and years. The application integrates matplotlib for embedding charts within the Tkinter interface, making it a comprehensive tool for exploring and analyzing the data effectively. The third project demonstrates how to create a synthetic dataset simulating stock prices for multiple companies over 10,000 days, using random number generation to simulate stock prices for AAPL, GOOG, AMZN, MSFT, TSLA, and META. The dataset, initially in a wide format with separate columns for each company's stock prices, is then reshaped to a long format using pd.melt(). This long format, where each row represents a single date, stock, and its price, is often better suited for data analysis and visualization. Finally, both the original and unpivoted DataFrames are saved to separate Excel files for further use. The fourth project involves developing a visually engaging Tkinter GUI to analyze and visualize a synthetic stock dataset. The application handles stock price data for multiple companies, offering users both the original and unpivoted DataFrames, along with summary statistics and graphical representations. The GUI includes tabs for viewing raw and transformed data, statistical summaries, and interactive graphs, utilizing Tkinter's advanced widgets for a polished user experience. Data is saved to Excel files, and Matplotlib charts are integrated for clear data visualization, making the tool useful for both casual and advanced analysis of stock market trends. In chapter six, the first project demonstrates creating a large synthetic road traffic dataset with 10,000 rows using randomization techniques. Fields include Date, Time, Location, Vehicle_Count, Average_Speed, and Incident. Random NaN values are introduced into 10% of the dataset to simulate missing data. The dataset is then cleaned by removing rows with any missing values using dropna(), and the resulting cleaned DataFrame is saved to 'cleaned_large_road_traffic_data.xlsx' for further analysis. The second project creates a Tkinter-based GUI to analyze and visualize a synthetic road traffic dataset. It generates a dataset with 10,000 rows, including fields like date, time, location, vehicle count, average speed, and incidents. Random missing values are introduced and then removed by dropping rows with any NaNs. The GUI features four tabs: one for the original dataset, one for the cleaned dataset, one for summary statistics, and one for distribution graphs. Users can explore data tables with Tkinter's Treeview widget and view visualizations such as histograms and bar charts using Matplotlib, providing a comprehensive tool for data analysis. The third project generates a large synthetic electricity dataset to simulate real-world patterns in electricity consumption, temperature, and pricing. Missing values are introduced and then handled by filling gaps with regional averages for consumption, forward-filling temperature data, and using overall means for pricing. The cleaned dataset is saved to an Excel file, offering a valuable resource for testing data processing methods and developing data analysis algorithms in a controlled environment. The fourth project demonstrates a Tkinter GUI for handling missing data in a synthetic electricity dataset. The application offers a multi-tab interface to analyze electricity consumption data, including features for displaying the original and cleaned DataFrames, summary statistics, distribution graphs, and time-series plots. Users can view raw and processed data, explore statistical summaries, and visualize distributions and trends in electricity consumption, temperature, and pricing over time. The GUI integrates data generation, cleaning, and visualization techniques, providing a comprehensive tool for electricity data analysis.
Download or read book Applications of Synthetic High Dimensional Data written by Sobczak-Michalowska, Marzena and published by IGI Global. This book was released on 2024-03-25 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need for tailored data for machine learning models is often unsatisfied, as it is considered too much of a risk in the real-world context. Synthetic data, an algorithmically birthed counterpart to operational data, is the linchpin for overcoming constraints associated with sensitive or regulated information. In high-dimensional data, where the dimensions of features and variables often surpass the number of available observations, the emergence of synthetic data heralds a transformation. Applications of Synthetic High Dimensional Data delves into the algorithms and applications underpinning the creation of synthetic data, which surpass the capabilities of authentic datasets in many cases. Beyond mere mimicry, synthetic data takes center stage in prioritizing the mathematical domain, becoming the crucible for training robust machine learning models. It serves not only as a simulation but also as a theoretical entity, permitting the consideration of unforeseen variables and facilitating fundamental problem-solving. This book navigates the multifaceted advantages of synthetic data, illuminating its role in protecting the privacy and confidentiality of authentic data. It also underscores the controlled generation of synthetic data as a mechanism to safeguard private information while maintaining a controlled resemblance to real-world datasets. This controlled generation ensures the preservation of privacy and facilitates learning across datasets, which is crucial when dealing with incomplete, scarce, or biased data. Ideal for researchers, professors, practitioners, faculty members, students, and online readers, this book transcends theoretical discourse.
Download or read book Mastering Matplotlib 2 x written by Benjamin Walter Keller and published by Packt Publishing Ltd. This book was released on 2018-11-29 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understand and build beautiful and advanced plots with Matplotlib and Python Key FeaturesPractical guide with hands-on examples to design interactive plotsAdvanced techniques to constructing complex plotsExplore 3D plotting and visualization using Jupyter NotebookBook Description In this book, you’ll get hands-on with customizing your data plots with the help of Matplotlib. You’ll start with customizing plots, making a handful of special-purpose plots, and building 3D plots. You’ll explore non-trivial layouts, Pylab customization, and more about tile configuration. You’ll be able to add text, put lines in plots, and also handle polygons, shapes, and annotations. Non-Cartesian and vector plots are exciting to construct, and you’ll explore them further in this book. You’ll delve into niche plots and visualize ordinal and tabular data. In this book, you’ll be exploring 3D plotting, one of the best features when it comes to 3D data visualization, along with Jupyter Notebook, widgets, and creating movies for enhanced data representation. Geospatial plotting will also be explored. Finally, you’ll learn how to create interactive plots with the help of Jupyter. Learn expert techniques for effective data visualization using Matplotlib 3 and Python with our latest offering -- Matplotlib 3.0 Cookbook What you will learnDeal with non-trivial and unusual plotsUnderstanding Basemap methodsCustomize and represent data in 3D Construct Non-Cartesian and vector plotsDesign interactive plots using Jupyter NotebookMake movies for enhanced data representationWho this book is for This book is aimed at individuals who want to explore data visualization techniques. A basic knowledge of Matplotlib and Python is required.
Download or read book Linux Apps Tutorials Herong s Tutorial Examples written by Herong Yang and published by HerongYang.com. This book was released on with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of notes and sample codes written by the author while he was learning Linux applications. Topics include using managing users and groups; managing files and directories; managing Apache Web server and SquirrelMail; managing MySQL server; developing Python and PHP scripts; using GCC C/C++ compilers; running graphical applications on GNOME desktop and X11 servers; running Conda - Environment and Package Manager. Updated in 2023 (Version v1.02) with minor updates. For latest updates and free sample chapters, visit https://www.herongyang.com/Linux-Apps.
Download or read book Python Apps on Visual Studio Code written by Swapnil Saurav and published by BPB Publications. This book was released on 2024-02-02 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supercharge your Python skills: Build stunning apps using Visual Studio Code KEY FEATURES ● Effectively use VS Code for designing efficient Python programs. ● Learn to develop applications and master the concepts of Python. ● Master the popular VS Code and the most popular programming language Python. DESCRIPTION Python is the most user-friendly programming language, and with VS Code, coding becomes even easier. VS Code is a code editor that supports tasks like debugging and version control. This book will help readers enhance basic programming skills, create efficient Python applications with ease, and skip lengthy learning hours for smart development. Utilize the capabilities of Visual Studio Code with this book. From setting up the environment to developing Python applications, this book will help you explore various aspects of Visual Studio Code. Go in-depth with advanced topics like building desktop databases, mastering algorithms, and creating multi-threading applications. The readers will learn to create a Jupyter Dashboard, edit Jupyter Notebooks, master Tkinter GUI, and develop Flask web applications. Explore container work in Azure for a complete understanding of using VS Code in diverse development scenarios. By the end of this book, the readers will become self-reliant coding experts by creating smart solutions. WHAT YOU WILL LEARN ● Set up and configure Visual Studio Code for Python development. ● Use top extensions in Visual Studio Code to enhance productivity. ● Design advanced algorithms and build multi-threading applications. ● Master GUI development with Tkinter and build Flask-based web applications. ● Work with containers in Azure for deployment. WHO THIS BOOK IS FOR This book is for developers who may not have prior experience with Python programming, but want to learn Python programming through Visual Studio Code editor for Python development. TABLE OF CONTENTS 1. Introduction to VS Code 2. Setting up the Environment 3. Top Extensions in VS Code for Python 4. Developing Visualizing Python App in VS Code 5. Developing Desktop Application using Database 6. Advanced Algorithm Design 7. Building Multithreading Application 8. Building an Interactive Dashboard using Jupyter Notebook 9. Editing and Debugging Jupyter Notebook 10. Mastering Tkinter GUI Capabilities using VS Code 11. Developing Flask-based Web Applications 12. Working with Containers in Azure
Download or read book Machine Learning Approaches in Financial Analytics written by Leandros A. Maglaras and published by Springer Nature. This book was released on with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: