EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Interacting Electrons

    Book Details:
  • Author : Richard M. Martin
  • Publisher : Cambridge University Press
  • Release : 2016-06-30
  • ISBN : 1316558568
  • Pages : 843 pages

Download or read book Interacting Electrons written by Richard M. Martin and published by Cambridge University Press. This book was released on 2016-06-30 with total page 843 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent progress in the theory and computation of electronic structure is bringing an unprecedented level of capability for research. Many-body methods are becoming essential tools vital for quantitative calculations and understanding materials phenomena in physics, chemistry, materials science and other fields. This book provides a unified exposition of the most-used tools: many-body perturbation theory, dynamical mean field theory and quantum Monte Carlo simulations. Each topic is introduced with a less technical overview for a broad readership, followed by in-depth descriptions and mathematical formulation. Practical guidelines, illustrations and exercises are chosen to enable readers to appreciate the complementary approaches, their relationships, and the advantages and disadvantages of each method. This book is designed for graduate students and researchers who want to use and understand these advanced computational tools, get a broad overview, and acquire a basis for participating in new developments.

Book Interacting Electrons and Quantum Magnetism

Download or read book Interacting Electrons and Quantum Magnetism written by Assa Auerbach and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the excitement and rapid pace of developments, writing pedagogical texts has low priority for most researchers. However, in transforming my lecture l notes into this book, I found a personal benefit: the organization of what I understand in a (hopefully simple) logical sequence. Very little in this text is my original contribution. Most of the knowledge was collected from the research literature. Some was acquired by conversations with colleagues; a kind of physics oral tradition passed between disciples of a similar faith. For many years, diagramatic perturbation theory has been the major theoretical tool for treating interactions in metals, semiconductors, itiner ant magnets, and superconductors. It is in essence a weak coupling expan sion about free quasiparticles. Many experimental discoveries during the last decade, including heavy fermions, fractional quantum Hall effect, high temperature superconductivity, and quantum spin chains, are not readily accessible from the weak coupling point of view. Therefore, recent years have seen vigorous development of alternative, nonperturbative tools for handling strong electron-electron interactions. I concentrate on two basic paradigms of strongly interacting (or con strained) quantum systems: the Hubbard model and the Heisenberg model. These models are vehicles for fundamental concepts, such as effective Ha miltonians, variational ground states, spontaneous symmetry breaking, and quantum disorder. In addition, they are used as test grounds for various nonperturbative approximation schemes that have found applications in diverse areas of theoretical physics.

Book Interacting Electrons in Reduced Dimensions

Download or read book Interacting Electrons in Reduced Dimensions written by Dionys Baeriswyl and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: As its name suggests, the 1988 workshop on "Interacting Electrons in Reduced Dimen the wide variety of physical effects that are associated with (possibly sions" focused on strongly) correlated electrons interacting in quasi-one- and quasi-two-dimensional mate rials. Among the phenomena discussed were superconductivity, magnetic ordering, the metal-insulator transition, localization, the fractional Quantum Hall effect (QHE), Peierls and spin-Peierls transitions, conductance fluctuations and sliding charge-density (CDW) and spin-density (SDW) waves. That these effects appear most pronounced in systems of reduced dimensionality was amply demonstrated at the meeting. Indeed, when concrete illustrations were presented, they typically involved chain-like materials such as conjugated polymers, inorganic CDW systems and organie conductors, or layered materials such as high-temperature copper-oxide superconductors, certain of the organic superconductors, and the QHE samples, or devices where the electrons are confined to a restricted region of sample, e. g. , the depletion layer of a MOSFET. To enable this broad subject to be covered in thirty-five lectures (and ab out half as many posters), the workshop was deliberately focused on theoretical models for these phenomena and on methods for describing as faithfully as possible the "true" behav ior of these models. This latter emphasis was especially important, since the inherently many-body nature of problems involving interacting electrons renders conventional effec tive single-particle/mean-field methods (e. g. , Hartree-Fock or the local-density approxi mation in density-functional theory) highly suspect. Again, this is particularly true in reduced dimensions, where strong quantum fluctuations can invalidate mean-field results.

Book Interacting Electrons in Nanostructures

Download or read book Interacting Electrons in Nanostructures written by Rolf Haug and published by Springer. This book was released on 2008-01-11 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: The exciting field of nanostructured materials offers many challenging perspectives for fundamental research and technological applications. The combination of quantum mechanics, interaction, phase coherence, and magnetism are important for understanding many physical phenomena in these systems. This book provides an overview of many aspects of interacting electrons in nanostructures, including such interesting topics as quantum dots, quantum wires, molecular electronics, dephasing, spintronics, and nanomechanics. The content reflects the current research in this area and is written by leading experts in the field.

Book Optical Properties of 2D Systems with Interacting Electrons

Download or read book Optical Properties of 2D Systems with Interacting Electrons written by Wolfgang J. Ossau and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the NATO Advanced Research Workshop, held in St. Petersburg, Russia, 13-16 June 2002

Book Interacting Electrons

    Book Details:
  • Author : Richard M. Martin
  • Publisher : Cambridge University Press
  • Release : 2016-06-30
  • ISBN : 0521871506
  • Pages : 843 pages

Download or read book Interacting Electrons written by Richard M. Martin and published by Cambridge University Press. This book was released on 2016-06-30 with total page 843 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book sets out modern methods of computing properties of materials, including essential theoretical background, computational approaches, practical guidelines and instructive applications.

Book Electronic Structure

    Book Details:
  • Author : Richard M. Martin
  • Publisher : Cambridge University Press
  • Release : 2004-04-08
  • ISBN : 9780521782852
  • Pages : 658 pages

Download or read book Electronic Structure written by Richard M. Martin and published by Cambridge University Press. This book was released on 2004-04-08 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: An important graduate textbook in condensed matter physics by highly regarded physicist.

Book Quantum Theory of the Electron Liquid

Download or read book Quantum Theory of the Electron Liquid written by Gabriele Giuliani and published by Cambridge University Press. This book was released on 2008-06-19 with total page 779 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern electronic devices and novel materials often derive their extraordinary properties from the intriguing, complex behavior of large numbers of electrons forming what is known as an electron liquid. This book provides an in-depth introduction to the physics of the interacting electron liquid in a broad variety of systems, including metals, semiconductors, artificial nano-structures, atoms and molecules. One, two and three dimensional systems are treated separately and in parallel. Different phases of the electron liquid, from the Landau Fermi liquid to the Wigner crystal, from the Luttinger liquid to the quantum Hall liquid are extensively discussed. Both static and time-dependent density functional theory are presented in detail. Although the emphasis is on the development of the basic physical ideas and on a critical discussion of the most useful approximations, the formal derivation of the results is highly detailed and based on the simplest, most direct methods.

Book The Physics of Interacting Electrons in Disordered Systems

Download or read book The Physics of Interacting Electrons in Disordered Systems written by Hiroshi Kamimura and published by . This book was released on 1989 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys recent advances in this field in two parts. The first half treats impurity bands in three dimensions; the second half deals with outstanding features of two-dimensional electron systems.

Book Transport of Interacting Electrons in Mesoscopic Systems

Download or read book Transport of Interacting Electrons in Mesoscopic Systems written by Theodorus H. Stoof and published by Coronet Books. This book was released on 1997 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Physics Of Heavy Fermions  Heavy Fermions And Strongly Correlated Electrons Systems

Download or read book Physics Of Heavy Fermions Heavy Fermions And Strongly Correlated Electrons Systems written by Yoshichika Onuki and published by World Scientific. This book was released on 2018-04-26 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: A large variety of materials prove to be fascinating in solid state and condensed matter physics. New materials create new physics, which is spearheaded by the international experimental expert, Prof Yoshichika Onuki. Among them, the f electrons of rare earth and actinide compounds typically exhibit a variety of characteristic properties, including spin and charge orderings, spin and valence fluctuations, heavy fermions, and anisotropic superconductivity. These are mainly manifestations of better competitive phenomena between the RKKY interaction and the Kondo effect. The present text is written so as to understand these phenomena and the research they prompt. For example, superconductivity was once regarded as one of the more well-understood many-body problems. However, it is, in fact, still an exciting phenomenon in new materials. Additionally, magnetism and superconductivity interplay strongly in heavy fermion superconductors. The understanding of anisotropic superconductivity and magnetism is a challenging problem in solid state and condensed matter physics. This book will tackle all these topics and more.

Book Materials Interaction with Femtosecond Lasers

Download or read book Materials Interaction with Femtosecond Lasers written by Bernd Bauerhenne and published by Springer Nature. This book was released on 2021-10-25 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unified view of the response of materials as a result of femtosecond laser excitation, introducing a general theory that captures both ultrashort-time non-thermal and long-time thermal phenomena. It includes a novel method for performing ultra-large-scale molecular dynamics simulations extending into experimental and technological spatial dimensions with ab-initio precision. For this, it introduces a new class of interatomic potentials, constructed from ab-initio data with the help of a self-learning algorithm, and verified by direct comparison with experiments in two different materials — the semiconductor silicon and the semimetal antimony. In addition to a detailed description of the new concepts introduced, as well as giving a timely review of ultrafast phenomena, the book provides a rigorous introduction to the field of laser–matter interaction and ab-initio description of solids, delivering a complete and self-contained examination of the topic from the very first principles. It explains, step by step from the basic physical principles, the underlying concepts in quantum mechanics, solid-state physics, thermodynamics, statistical mechanics, and electrodynamics, introducing all necessary mathematical theorems as well as their proofs. A collection of appendices provide the reader with an appropriate review of many fundamental mathematical concepts, as well as important analytical and numerical parameters used in the simulations.

Book Dissipative Quantum Mechanics of Nanostructures

Download or read book Dissipative Quantum Mechanics of Nanostructures written by Andrei D. Zaikin and published by CRC Press. This book was released on 2019-05-24 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continuing miniaturization of electronic devices, together with the quickly growing number of nanotechnological applications, demands a profound understanding of the underlying physics. Most of the fundamental problems of modern condensed matter physics involve various aspects of quantum transport and fluctuation phenomena at the nanoscale. In nanostructures, electrons are usually confined to a limited volume and interact with each other and lattice ions, simultaneously suffering multiple scattering events on impurities, barriers, surface imperfections, and other defects. Electron interaction with other degrees of freedom generally yields two major consequences, quantum dissipation and quantum decoherence. In other words, electrons can lose their energy and ability for quantum interference even at very low temperatures. These two different, but related, processes are at the heart of all quantum phenomena discussed in this book. This book presents copious details to facilitate the understanding of the basic physics behind a result and the learning to technically reproduce the result without delving into extra literature. The book subtly balances the description of theoretical methods and techniques and the display of the rich landscape of the physical phenomena that can be accessed by these methods. It is useful for a broad readership ranging from master’s and PhD students to postdocs and senior researchers.

Book Quantum Mechanics

    Book Details:
  • Author : Caio Lima Firme
  • Publisher : CRC Press
  • Release : 2022-06-15
  • ISBN : 1000609812
  • Pages : 462 pages

Download or read book Quantum Mechanics written by Caio Lima Firme and published by CRC Press. This book was released on 2022-06-15 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Main features: i) A different approach for teaching Quantum Mechanics encompassing old quantum mechanics, matrix mechanics and wave mechanics in a historical perspective which helps to consolidate most important concepts of Quantum Mechanics; ii) Original information from the most important papers of Quantum Mechanics; iii) Derivation of all important equations of Quantum Mechanics, for example, Heisenberg’s uncertainty principle, de Broglie’s wave-particle duality, Schrödinger’s wave equation, etc., showing their interrelations through Dirac’s equations and other applications of matrix and wave mechanics; iv) Comprehensive mathematical support for the understanding of Quantum Mechanics; derivation of all equations make reading easier; v) The illustrations of the book cover examples, exercises and do-it-yourself activities; vi) Fundamentals of Fortran and numerical calculation along with the source codes for numerical solutions of several mathematical and quantum problems. All source codes are in the author’s site: (https://www.fortrancodes.com/); vii) Chapters devoted to linear algebra and differential equations applied to quantum mechanics and their numerical solutions; viii) Complete solution for the one-electron and two-electron problems using Schrödinger’s time independent equation along with their source codes.

Book Stars as Laboratories for Fundamental Physics

Download or read book Stars as Laboratories for Fundamental Physics written by Georg G. Raffelt and published by University of Chicago Press. This book was released on 1996-05 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: Much of what we know about neutrinos is revealed by astronomical observations, and the same applies to the axion, a conjectured new particle that is a favored candidate for the main component of the dark matter of the universe.

Book An Assessment of U S  Based Electron Ion Collider Science

Download or read book An Assessment of U S Based Electron Ion Collider Science written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2018-10-13 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding of protons and neutrons, or "nucleons"â€"the building blocks of atomic nucleiâ€"has advanced dramatically, both theoretically and experimentally, in the past half century. A central goal of modern nuclear physics is to understand the structure of the proton and neutron directly from the dynamics of their quarks and gluons governed by the theory of their interactions, quantum chromodynamics (QCD), and how nuclear interactions between protons and neutrons emerge from these dynamics. With deeper understanding of the quark-gluon structure of matter, scientists are poised to reach a deeper picture of these building blocks, and atomic nuclei themselves, as collective many-body systems with new emergent behavior. The development of a U.S. domestic electron-ion collider (EIC) facility has the potential to answer questions that are central to completing an understanding of atoms and integral to the agenda of nuclear physics today. This study assesses the merits and significance of the science that could be addressed by an EIC, and its importance to nuclear physics in particular and to the physical sciences in general. It evaluates the significance of the science that would be enabled by the construction of an EIC, its benefits to U.S. leadership in nuclear physics, and the benefits to other fields of science of a U.S.-based EIC.