Download or read book Integration on Locally Compact Spaces written by N. Dinculeanu and published by Springer Science & Business Media. This book was released on 1974-08 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Measure and Integration Theory written by Heinz Bauer and published by Walter de Gruyter. This book was released on 2011-04-20 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a straightforward introduction to the field as it is nowadays required in many branches of analysis and especially in probability theory. The first three chapters (Measure Theory, Integration Theory, Product Measures) basically follow the clear and approved exposition given in the author's earlier book on "Probability Theory and Measure Theory". Special emphasis is laid on a complete discussion of the transformation of measures and integration with respect to the product measure, convergence theorems, parameter depending integrals, as well as the Radon-Nikodym theorem. The final chapter, essentially new and written in a clear and concise style, deals with the theory of Radon measures on Polish or locally compact spaces. With the main results being Luzin's theorem, the Riesz representation theorem, the Portmanteau theorem, and a characterization of locally compact spaces which are Polish, this chapter is a true invitation to study topological measure theory. The text addresses graduate students, who wish to learn the fundamentals in measure and integration theory as needed in modern analysis and probability theory. It will also be an important source for anyone teaching such a course.
Download or read book Integration and Probability written by Paul Malliavin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to analysis with the right mix of abstract theories and concrete problems. Starting with general measure theory, the book goes on to treat Borel and Radon measures and introduces the reader to Fourier analysis in Euclidean spaces with a treatment of Sobolev spaces, distributions, and the corresponding Fourier analysis. It continues with a Hilbertian treatment of the basic laws of probability including Doob's martingale convergence theorem and finishes with Malliavin's "stochastic calculus of variations" developed in the context of Gaussian measure spaces. This invaluable contribution gives a taste of the fact that analysis is not a collection of independent theories, but can be treated as a whole.
Download or read book Measure and Integration written by Heinz König and published by Springer Science & Business Media. This book was released on 2012-06-06 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of Heinz König’s publications connects to his book of 1997 “Measure and Integration” and presents significant developments in the subject from then up to the present day. The result is a consistent new version of measure theory, including selected applications. The basic step is the introduction of the inner • (bullet) and outer • (bullet) premeasures and their extension to unique maximal measures. New “envelopes” for the initial set function (to replace the traditional Carathéodory outer measures) have been created, which lead to much simpler and more explicit treatment. In view of these new concepts, the main results are unmatched in scope and plainness, as well as in explicitness. Important examples are the formation of products, a unified Daniell-Stone-Riesz representation theorem, and projective limits. Further to the contributions in this volume, after 2011 Heinz König published two more articles that round up his work: On the marginals of probability contents on lattices (Mathematika 58, No. 2, 319-323, 2012), and Measure and integration: the basic extension and representation theorems in terms of new inner and outer envelopes (Indag. Math., New Ser. 25, No. 2, 305-314, 2014).
Download or read book Measure and Integration written by Heinz König and published by Springer Science & Business Media. This book was released on 1997 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at restructuring some fundamentals in measure and integration theory. It centers around the ubiquitous task to produce appropriate contents and measures from more primitive data like elementary contents and elementary integrals. It develops the new approach started around 1970 by Topsoe and others into a systematic theory. The theory is much more powerful than the traditional means and has striking implications all over measure theory and beyond.
Download or read book Integrals and Operators written by I.E. Segal and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: TO THE SECOND EDITION Since publication of the First Edition several excellent treatments of advanced topics in analysis have appeared. However, the concentration and penetration of these treatises naturally require much in the way of technical preliminaries and new terminology and notation. There consequently remains a need for an introduction to some of these topics which would mesh with the material of the First Edition. Such an introduction could serve to exemplify the material further, while using it to shorten and simplify its presentation. It seemed particularly important as well as practical to treat briefly but cogently some of the central parts of operator algebra and higher operator theory, as these are presently represented in book form only with a degree of specialization rather beyond the immediate needs or interests of many readers. Semigroup and perturbation theory provide connections with the theory of partial differential equations. C*-algebras are important in har monic analysis and the mathematical foundations of quantum mechanics. W*-algebras (or von Neumann rings) provide an approach to the theory of multiplicity of the spectrum and some simple but key elements of the gram mar of analysis, of use in group representation theory and elsewhere. The v vi Preface to the Second Edition theory of the trace for operators on Hilbert space is both important in itself and a natural extension of earlier integration-theoretic ideas.
Download or read book The Structure of Locally Compact Abelian Groups written by David L. Armacost and published by . This book was released on 1981 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Foundations of Constructive Probability Theory written by Yuen-Kwok Chan and published by Cambridge University Press. This book was released on 2021-05-27 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic and general theory of probability within the framework of constructive mathematics.
Download or read book Measure Integration And Function Spaces written by Charles W Swartz and published by World Scientific. This book was released on 1994-02-21 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text contains a basic introduction to the abstract measure theory and the Lebesgue integral. Most of the standard topics in the measure and integration theory are discussed. In addition, topics on the Hewitt-Yosida decomposition, the Nikodym and Vitali-Hahn-Saks theorems and material on finitely additive set functions not contained in standard texts are explored. There is an introductory section on functional analysis, including the three basic principles, which is used to discuss many of the classic Banach spaces of functions and their duals. There is also a chapter on Hilbert space and the Fourier transform.
Download or read book Introduction to Compact Transformation Groups written by and published by Academic Press. This book was released on 1972-09-29 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Compact Transformation Groups
Download or read book Measure and Integration written by Hari Bercovici and published by Springer. This book was released on 2016-03-17 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the material of a one year course in real analysis. It includes an original axiomatic approach to Lebesgue integration which the authors have found to be effective in the classroom. Each chapter contains numerous examples and an extensive problem set which expands considerably the breadth of the material covered in the text. Hints are included for some of the more difficult problems.
Download or read book Lectures on Real Analysis written by J. Yeh and published by World Scientific. This book was released on 2000 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of the Lebesgue integral is a main pillar in the foundation of modern analysis and its applications, including probability theory. This volume shows how and why the Lebesgue integral is such a universal and powerful concept. The lines of development of the theory are made clear by the order in which the main theorems are presented. Frequent references to earlier theorems made in the proofs emphasize the interdependence of the theorems and help to show how the various definitions and theorems fit together. Counter-examples are included to show why a hypothesis in a theorem cannot be dropped. The book is based upon a course on real analysis which the author has taught. It is particularly suitable for a one-year course at the graduate level. Precise statements and complete proofs are given for every theorem, with no obscurity left. For this reason the book is also suitable for self-study.
Download or read book Integration II written by N. Bourbaki and published by Springer Science & Business Media. This book was released on 2004-09-07 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integration is the sixth and last of the books that form the core of the Bourbaki series; it draws abundantly on the preceding five Books, especially General Topology and Topological Vector Spaces, making it a culmination of the core six. The power of the tool thus fashioned is strikingly displayed in Chapter II of the author's Théories Spectrales, an exposition, in a mere 38 pages, of abstract harmonic analysis and the structure of locally compact abelian groups. The first volume of the English translation comprises Chapters 1-6; the present volume completes the translation with the remaining Chapters 7-9. Chapters 1-5 received very substantial revisions in a second edition, including changes to some fundamental definitions. Chapters 6-8 are based on the first editions of Chapters 1-5. The English edition has given the author the opportunity to correct misprints, update references, clarify the concordance of Chapter 6 with the second editions of Chapters 1-5, and revise the definition of a key concept in Chapter 6 (measurable equivalence relations).
Download or read book Measure Integration and Functional Analysis written by Robert B. Ash and published by Academic Press. This book was released on 2014-05-10 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Measure, Integration, and Functional Analysis deals with the mathematical concepts of measure, integration, and functional analysis. The fundamentals of measure and integration theory are discussed, along with the interplay between measure theory and topology. Comprised of four chapters, this book begins with an overview of the basic concepts of the theory of measure and integration as a prelude to the study of probability, harmonic analysis, linear space theory, and other areas of mathematics. The reader is then introduced to a variety of applications of the basic integration theory developed in the previous chapter, with particular reference to the Radon-Nikodym theorem. The third chapter is devoted to functional analysis, with emphasis on various structures that can be defined on vector spaces. The final chapter considers the connection between measure theory and topology and looks at a result that is a companion to the monotone class theorem, together with the Daniell integral and measures on topological spaces. The book concludes with an assessment of measures on uncountably infinite product spaces and the weak convergence of measures. This book is intended for mathematics majors, most likely seniors or beginning graduate students, and students of engineering and physics who use measure theory or functional analysis in their work.
Download or read book Measure Theory and Integration written by M.M. Rao and published by CRC Press. This book was released on 2018-10-03 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: Significantly revised and expanded, this authoritative reference/text comprehensively describes concepts in measure theory, classical integration, and generalized Riemann integration of both scalar and vector types-providing a complete and detailed review of every aspect of measure and integration theory using valuable examples, exercises, and applications. With more than 170 references for further investigation of the subject, this Second Edition provides more than 60 pages of new information, as well as a new chapter on nonabsolute integrals contains extended discussions on the four basic results of Banach spaces presents an in-depth analysis of the classical integrations with many applications, including integration of nonmeasurable functions, Lebesgue spaces, and their properties details the basic properties and extensions of the Lebesgue-Carathéodory measure theory, as well as the structure and convergence of real measurable functions covers the Stone isomorphism theorem, the lifting theorem, the Daniell method of integration, and capacity theory Measure Theory and Integration, Second Edition is a valuable reference for all pure and applied mathematicians, statisticians, and mathematical analysts, and an outstanding text for all graduate students in these disciplines.
Download or read book An Introduction to Geometrical Physics written by Aldrovandi Ruben and published by World Scientific. This book was released on 2016-10-07 with total page 844 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the unifying power of the geometrical language in bringing together concepts from many different areas of physics, ranging from classical physics to the theories describing the four fundamental interactions of Nature -- gravitational, electromagnetic, strong nuclear, and weak nuclear. The book provides in a single volume a thorough introduction to topology and differential geometry, as well as many applications to both mathematical and physical problems. It is aimed as an elementary text and is intended for first year graduate students. In addition to the traditional contents of books on special and general relativities, this book discusses also some recent advances such as de Sitter invariant special relativity, teleparallel gravity and their implications in cosmology for those wishing to reach a higher level of understanding.
Download or read book Integration I written by N. Bourbaki and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the sixth and last of the books that form the core of the Bourbaki series, comprising chapters 1-6 in English translation. One striking feature is its exposition of abstract harmonic analysis and the structure of locally compact Abelian groups. This English edition corrects misprints, updates references, and revises the definition of the concept of measurable equivalence relations.