EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Practical Machine Learning

Download or read book Practical Machine Learning written by Ted Dunning and published by "O'Reilly Media, Inc.". This book was released on 2014 with total page 55 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation Building a simple but powerful recommendation system is much easier than you think. Approachable for all levels of expertise, this report explains innovations that make machine learning practical for business production settingsand demonstrates how even a small-scale development team can design an effective large-scale recommendation system. Apache Mahout committers Ted Dunning and Ellen Friedman walk you through a design that relies on careful simplification. Youll learn how to collect the right data, analyze it with an algorithm from the Mahout library, and then easily deploy the recommender using search technology, such as Apache Solr or Elasticsearch. Powerful and effective, this efficient combination does learning offline and delivers rapid response recommendations in real time. Understand the tradeoffs between simple and complex recommendersCollect user data that tracks user actionsrather than their ratingsPredict what a user wants based on behavior by others, using Mahoutfor co-occurrence analysisUse search technology to offer recommendations in real time, complete with item metadataWatch the recommender in action with a music service exampleImprove your recommender with dithering, multimodal recommendation, and other techniques.

Book Machine Learning for Healthcare Applications

Download or read book Machine Learning for Healthcare Applications written by Sachi Nandan Mohanty and published by John Wiley & Sons. This book was released on 2021-04-13 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in that it presents detailed computer simulations for all models presented with explanations of the program code. It includes unique and distinctive chapters on disease diagnosis, telemedicine, medical imaging, smart health monitoring, social media healthcare, and machine learning for COVID-19. These chapters help develop a clear understanding of the working of an algorithm while strengthening logical thinking. In this environment, answering a single question may require accessing several data sources and calling on sophisticated analysis tools. While data integration is a dynamic research area in the database community, the specific needs of research have led to the development of numerous middleware systems that provide seamless data access in a result-driven environment. Since this book is intended to be useful to a wide audience, students, researchers and scientists from both academia and industry may all benefit from this material. It contains a comprehensive description of issues for healthcare data management and an overview of existing systems, making it appropriate for introductory and instructional purposes. Prerequisites are minimal; the readers are expected to have basic knowledge of machine learning. This book is divided into 22 real-time innovative chapters which provide a variety of application examples in different domains. These chapters illustrate why traditional approaches often fail to meet customers’ needs. The presented approaches provide a comprehensive overview of current technology. Each of these chapters, which are written by the main inventors of the presented systems, specifies requirements and provides a description of both the chosen approach and its implementation. Because of the self-contained nature of these chapters, they may be read in any order. Each of the chapters use various technical terms which involve expertise in machine learning and computer science.

Book Innovations and Applications of AI  IoT  and Cognitive Technologies

Download or read book Innovations and Applications of AI IoT and Cognitive Technologies written by Jingyuan Zhao and published by . This book was released on 2021-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Artificial Intelligence

Download or read book Artificial Intelligence written by Harvard Business Review and published by HBR Insights. This book was released on 2019 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Companies that don't use AI to their advantage will soon be left behind. Artificial intelligence and machine learning will drive a massive reshaping of the economy and society. What should you and your company be doing right now to ensure that your business is poised for success? These articles by AI experts and consultants will help you understand today's essential thinking on what AI is capable of now, how to adopt it in your organization, and how the technology is likely to evolve in the near future. Artificial Intelligence: The Insights You Need from Harvard Business Review will help you spearhead important conversations, get going on the right AI initiatives for your company, and capitalize on the opportunity of the machine intelligence revolution. Catch up on current topics and deepen your understanding of them with the Insights You Need series from Harvard Business Review. Featuring some of HBR's best and most recent thinking, Insights You Need titles are both a primer on today's most pressing issues and an extension of the conversation, with interesting research, interviews, case studies, and practical ideas to help you explore how a particular issue will impact your company and what it will mean for you and your business.

Book Innovations in Machine Learning and IoT for Water Management

Download or read book Innovations in Machine Learning and IoT for Water Management written by Kumar, Abhishek and published by IGI Global. This book was released on 2023-11-27 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Water, our planet's life force, faces multiple challenges in the 21st century, including surging global demand, shifting climate patterns, and the urgent need for sustainable management. Guidance, knowledge, and hope is sharply needed in academia and technology industries, and Innovations in Machine Learning and IoT for Water Management is a formidable resource to provide these necessities. This book delves into the dynamic synergy of Artificial Intelligence (AI), Machine Learning (ML), and the Internet of Things (IoT), ushering in a new era of water resource stewardship. This book embarks on a journey through the frontiers of AI and IoT, unveiling their transformative impact on water management. From the vantage point of satellite imagery analysis, it scrutinizes the Earth's vital signs, unlocking crucial insights into water resources. It chronicles the rise of AI-powered predictive analytics, a revolutionary force propelling precision water usage and conservation. This book explains how IoT can be an effective tool to increase intelligence of our water systems. The book meticulously navigates through domains as diverse as aquifer monitoring, hydropower generation optimization, and predictive analytics for water consumption. This book caters to a diverse audience, from water management experts and environmental scientists to data science aficionados and IoT enthusiasts. Engineers seeking to reimagine the future of water systems, technology enthusiasts eager to delve into AI's potential, and individuals impassioned by preserving water will all find a well-needed resource in these pages.

Book Deploying Machine Learning

Download or read book Deploying Machine Learning written by Robbie Allen and published by Addison-Wesley Professional. This book was released on 2019-05 with total page 99998 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasingly, business leaders and managers recognize that machine learning offers their companies immense opportunities for competitive advantage. But most discussions of machine learning are intensely technical or academic, and don't offer practical information leaders can use to identify, evaluate, plan, or manage projects. Deploying Machine Learning fills that gap, helping them clarify exactly how machine learning can help them, and collaborate with technologists to actually apply it successfully. You'll learn: What machine learning is, how it compares to "big data" and "artificial intelligence," and why it's suddenly so important What machine learning can do for you: solutions for computer vision, natural language processing, prediction, and more How to use machine learning to solve real business problems -- from reducing costs through improving decision-making and introducing new products Separating hype from reality: identifying pitfalls, limitations, and misconceptions upfront Knowing enough about the technology to work effectively with your technical team Getting the data right: sourcing, collection, governance, security, and culture Solving harder problems: exploring deep learning and other advanced techniques Understanding today's machine learning software and hardware ecosystem Evaluating potential projects, and addressing workforce concerns Staffing your project, acquiring the right tools, and building a workable project plan Interpreting results -- and building an organization that can increasingly learn from data Using machine learning responsibly and ethically Preparing for tomorrow's advances The authors conclude with five chapter-length case studies: image, text, and video analysis, chatbots, and prediction applications. For each, they don't just present results: they also illuminate the process the company undertook, and the pitfalls it overcame along the way.

Book Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics

Download or read book Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics written by Abhishek Kumar and published by CRC Press. This book was released on 2022-03-09 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last two decades, machine learning has developed dramatically and is still experiencing a fast and everlasting change in paradigms, methodology, applications and other aspects. This book offers a compendium of current and emerging machine learning paradigms in healthcare informatics and reflects on their diversity and complexity. Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics presents a variety of techniques designed to enhance and empower multi-disciplinary and multi-institutional machine learning research. It provides many case studies and a panoramic view of data and machine learning techniques, providing the opportunity for novel insights and discoveries. The book explores the theory and practical applications in healthcare and includes a guided tour of machine learning algorithms, architecture design and interdisciplinary challenges. This book is useful for research scholars and students involved in critical condition analysis and computation models.

Book Advances in Financial Machine Learning

Download or read book Advances in Financial Machine Learning written by Marcos Lopez de Prado and published by John Wiley & Sons. This book was released on 2018-01-23 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.

Book Machine Learning  Concepts  Methodologies  Tools and Applications

Download or read book Machine Learning Concepts Methodologies Tools and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2011-07-31 with total page 2174 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This reference offers a wide-ranging selection of key research in a complex field of study,discussing topics ranging from using machine learning to improve the effectiveness of agents and multi-agent systems to developing machine learning software for high frequency trading in financial markets"--Provided by publishe

Book The AI Book

    Book Details:
  • Author : Ivana Bartoletti
  • Publisher : John Wiley & Sons
  • Release : 2020-06-29
  • ISBN : 1119551900
  • Pages : 304 pages

Download or read book The AI Book written by Ivana Bartoletti and published by John Wiley & Sons. This book was released on 2020-06-29 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by prominent thought leaders in the global fintech space, The AI Book aggregates diverse expertise into a single, informative volume and explains what artifical intelligence really means and how it can be used across financial services today. Key industry developments are explained in detail, and critical insights from cutting-edge practitioners offer first-hand information and lessons learned. Coverage includes: · Understanding the AI Portfolio: from machine learning to chatbots, to natural language processing (NLP); a deep dive into the Machine Intelligence Landscape; essentials on core technologies, rethinking enterprise, rethinking industries, rethinking humans; quantum computing and next-generation AI · AI experimentation and embedded usage, and the change in business model, value proposition, organisation, customer and co-worker experiences in today’s Financial Services Industry · The future state of financial services and capital markets – what’s next for the real-world implementation of AITech? · The innovating customer – users are not waiting for the financial services industry to work out how AI can re-shape their sector, profitability and competitiveness · Boardroom issues created and magnified by AI trends, including conduct, regulation & oversight in an algo-driven world, cybersecurity, diversity & inclusion, data privacy, the ‘unbundled corporation’ & the future of work, social responsibility, sustainability, and the new leadership imperatives · Ethical considerations of deploying Al solutions and why explainable Al is so important

Book The Economics of Artificial Intelligence

Download or read book The Economics of Artificial Intelligence written by Ajay Agrawal and published by University of Chicago Press. This book was released on 2024-03-05 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.

Book The Era of Artificial Intelligence  Machine Learning  and Data Science in the Pharmaceutical Industry

Download or read book The Era of Artificial Intelligence Machine Learning and Data Science in the Pharmaceutical Industry written by Stephanie K. Ashenden and published by Academic Press. This book was released on 2021-04-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Era of Artificial Intelligence, Machine Learning and Data Science in the Pharmaceutical Industry examines the drug discovery process, assessing how new technologies have improved effectiveness. Artificial intelligence and machine learning are considered the future for a wide range of disciplines and industries, including the pharmaceutical industry. In an environment where producing a single approved drug costs millions and takes many years of rigorous testing prior to its approval, reducing costs and time is of high interest. This book follows the journey that a drug company takes when producing a therapeutic, from the very beginning to ultimately benefitting a patient's life. This comprehensive resource will be useful to those working in the pharmaceutical industry, but will also be of interest to anyone doing research in chemical biology, computational chemistry, medicinal chemistry and bioinformatics. - Demonstrates how the prediction of toxic effects is performed, how to reduce costs in testing compounds, and its use in animal research - Written by the industrial teams who are conducting the work, showcasing how the technology has improved and where it should be further improved - Targets materials for a better understanding of techniques from different disciplines, thus creating a complete guide

Book Artificial Intelligence in Healthcare

Download or read book Artificial Intelligence in Healthcare written by Adam Bohr and published by Academic Press. This book was released on 2020-06-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Book Artificial Intelligence Applications and Innovations

Download or read book Artificial Intelligence Applications and Innovations written by Ilias Maglogiannis and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 17th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2021, held virtually and in Hersonissos, Crete, Greece, in June 2021. The 50 full papers and 11 short papers presented were carefully reviewed and selected from 113 submissions. They cover a broad range of topics related to technical, legal, and ethical aspects of artificial intelligence systems and their applications and are organized in the following sections: adaptive modeling/ neuroscience; AI in biomedical applications; AI impacts/ big data; automated machine learning; autonomous agents; clustering; convolutional NN; data mining/ word counts; deep learning; fuzzy modeling; hyperdimensional computing; Internet of Things/ Internet of energy; machine learning; multi-agent systems; natural language; recommendation systems; sentiment analysis; and smart blockchain applications/ cybersecurity. Chapter "Improving the Flexibility of Production Scheduling in Flat Steel Production Through Standard and AI-based Approaches: Challenges and Perspective" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Book AI Innovation in Medical Imaging Diagnostics

Download or read book AI Innovation in Medical Imaging Diagnostics written by Anbarasan, Kalaivani and published by IGI Global. This book was released on 2021-01-01 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advancements in the technology of medical imaging, such as CT and MRI scanners, are making it possible to create more detailed 3D and 4D images. These powerful images require vast amounts of digital data to help with the diagnosis of the patient. Artificial intelligence (AI) must play a vital role in supporting with the analysis of this medical imaging data, but it will only be viable as long as healthcare professionals and AI interact to embrace deep thinking platforms such as automation in the identification of diseases in patients. AI Innovation in Medical Imaging Diagnostics is an essential reference source that examines AI applications in medical imaging that can transform hospitals to become more efficient in the management of patient treatment plans through the production of faster imaging and the reduction of radiation dosages through the PET and SPECT imaging modalities. The book also explores how data clusters from these images can be translated into small data packages that can be accessed by healthcare departments to give a real-time insight into patient care and required interventions. Featuring research on topics such as assistive healthcare, cancer detection, and machine learning, this book is ideally designed for healthcare administrators, radiologists, data analysts, computer science professionals, medical imaging specialists, diagnosticians, medical professionals, researchers, and students.

Book Innovations in Intelligent Machines   1

Download or read book Innovations in Intelligent Machines 1 written by Javaan Singh Chahl and published by Springer. This book was released on 2007-07-07 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of chapters on the state of art in the area of intelligent machines. This research provides a sound basis to make autonomous systems human-like. The contributions include an introduction to intelligent machines; supervisory control of multiple UAVs; and intelligent autonomous UAV task allocation. Also included is material on UAV path planning; dynamic path planning ; state estimation of micro air vehicles and architecture for soccer playing robots, as well as robot perception.

Book The Innovation Mode

Download or read book The Innovation Mode written by George Krasadakis and published by Springer Nature. This book was released on 2020-07-29 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents unique insights and advice on defining and managing the innovation transformation journey. Using novel ideas, examples and best practices, it empowers management executives at all levels to drive cultural, technological and organizational changes toward innovation. Covering modern innovation techniques, tools, programs and strategies, it focuses on the role of the latest technologies (e.g., artificial intelligence to discover, handle and manage ideas), methodologies (including Agile Engineering and Rapid Prototyping) and combinations of these (like hackathons or gamification). At the same time, it highlights the importance of culture and provides suggestions on how to build it. In the era of AI and the unprecedented pace of technology evolution, companies need to become truly innovative in order to survive. The transformation toward an innovation-led company is difficult – it requires a strong leadership and culture, advanced technologies and well-designed programs. The book is based on the author’s long-term experience and novel ideas, and reflects two decades of startup, consulting and corporate leadership experience. It is intended for business, technology, and innovation leaders.