EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book CO2 Reservoir Oil Miscibility

Download or read book CO2 Reservoir Oil Miscibility written by Dayanand Saini and published by Springer. This book was released on 2018-07-04 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: This SpringerBrief critically examines the latest experimental and non-experimental approaches used for the fast and reliable characterization and determination of CO2-reservoir oil miscibility in terms of the minimum miscibility pressure (MMP). This book serves as a one-stop source for developing an enhanced understanding of these available methods, and specifically documents, analyses, and evaluates their suitability and robustness for depicting and characterizing the phenomenon of CO2-reservoir oil miscibility in a fast and cost-effective manner. Such information can greatly assist a project team in selecting an appropriate MMP determination method as per the project’s need at a given project’s stage, be that screening, design, or implementation. CO2-Reservoir Oil Miscibility: Experiential and Non-Experimental Characterization and Determination Approaches will be of interest to petroleum science and engineering professionals, researchers, and undergraduate and graduate students engaged in CO2 enhanced oil recovery (EOR) and/or simultaneous CO2-EOR and storage projects and related research. It may also be of interest to engineering and management professionals within the petroleum industry who have responsibility for implementing CO2-EOR projects.

Book Enhanced Oil Recovery Field Case Studies

Download or read book Enhanced Oil Recovery Field Case Studies written by James J.Sheng and published by Gulf Professional Publishing. This book was released on 2013-04-10 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enhanced Oil Recovery Field Case Studies bridges the gap between theory and practice in a range of real-world EOR settings. Areas covered include steam and polymer flooding, use of foam, in situ combustion, microorganisms, "smart water"-based EOR in carbonates and sandstones, and many more. Oil industry professionals know that the key to a successful enhanced oil recovery project lies in anticipating the differences between plans and the realities found in the field. This book aids that effort, providing valuable case studies from more than 250 EOR pilot and field applications in a variety of oil fields. The case studies cover practical problems, underlying theoretical and modeling methods, operational parameters, solutions and sensitivity studies, and performance optimization strategies, benefitting academicians and oil company practitioners alike. - Strikes an ideal balance between theory and practice - Focuses on practical problems, underlying theoretical and modeling methods, and operational parameters - Designed for technical professionals, covering the fundamental as well as the advanced aspects of EOR

Book Enhanced Oil Recovery

    Book Details:
  • Author : Marcel Latil
  • Publisher : Editions TECHNIP
  • Release : 1980
  • ISBN : 9782710810506
  • Pages : 258 pages

Download or read book Enhanced Oil Recovery written by Marcel Latil and published by Editions TECHNIP. This book was released on 1980 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents : 1. Factors common to all enhanced recovery methods. 2. Water injection. 3. Gas injection in an oil reservoir (immiscible displacement). 4. Miscible drive. 5. Gas recycling in gas-condensate reservoirs. 6. Thermal recovery methods. 7. Other methods of enhanced recovery. References. Index.

Book Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs

Download or read book Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs written by Alireza Bahadori and published by Gulf Professional Publishing. This book was released on 2018-08-18 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs delivers the proper foundation on all types of currently utilized and upcoming enhanced oil recovery, including methods used in emerging unconventional reservoirs. Going beyond traditional secondary methods, this reference includes advanced water-based EOR methods which are becoming more popular due to CO2 injection methods used in EOR and methods specific to target shale oil and gas activity. Rounding out with a chapter devoted to optimizing the application and economy of EOR methods, the book brings reservoir and petroleum engineers up-to-speed on the latest studies to apply. Enhanced oil recovery continues to grow in technology, and with ongoing unconventional reservoir activity underway, enhanced oil recovery methods of many kinds will continue to gain in studies and scientific advancements. Reservoir engineers currently have multiple outlets to gain knowledge and are in need of one product go-to reference. Explains enhanced oil recovery methods, focusing specifically on those used for unconventional reservoirs Includes real-world case studies and examples to further illustrate points Creates a practical and theoretical foundation with multiple contributors from various backgrounds Includes a full range of the latest and future methods for enhanced oil recovery, including chemical, waterflooding, CO2 injection and thermal

Book Investigation of Carbonated Water Injection  CWI  for Enhanced Oil Recovery at the Pore and Corescale

Download or read book Investigation of Carbonated Water Injection CWI for Enhanced Oil Recovery at the Pore and Corescale written by Sadigheh Mahdavi and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Oil recovery by CO2 injection has been studied in the laboratory and applied in the field, however, for the most part, CO2 injection lacks acceptable sweep efficiency. Various CO2 injection strategies such as CO2 alternating water and gas (CO2-WAG) and CO2 simultaneous alternating water and gas (CO2-SWAG) have been suggested to alleviate this problem and improve oil recovery. The amount of CO2 required can be a limiting factor especially in offshore applications. Thus, carbonated water injection (CWI) has recently been given considerable attention as it requires less CO2 for the injection and increases the sweep efficiency. This study provides an overview of previous work on the topic and outlines the results of an integrated experimental, theoretical, and simulation investigation of the CWI for enhanced oil recovery (EOR). The effect of carbonated water injection on vertical displacement (gravity effect) at both the pore-scale and core-scale was investigated in this study. The novelty of this research is to investigate the performance of water flooding (WF) and CWI in the presence of gravity using homogeneous and heterogeneous (fractured) porous media. The first phase of this research investigates the pore-scale displacement phenomena which occurs in the presence of CWI in a glass micromodel. Although the effects of many parameters have been studied, an investigation of the effect of gravity displacement and heterogeneous porous media on trapped oil extraction using CWI, is deficient in the current literature. To evaluate the potential use of CWI for vertical displacement and oil extraction, a series of experiments in medium pressure homogeneous and heterogeneous (fractured) micromodels were designed at 2.1 MPa (305 psi) and 21°C (69.8 °F). The oil saturation profile, fluid flow pattern, pore-scale mechanisms, and trapped oil mobilization were analyzed during the experiments. The results of CWI showed an increased vertical sweep efficiency compared to water flooding. The fluid flow pattern in both water flooding and CWI showed that the carbonated water phase has a better sweep efficiency. Secondary CWI resulted in 16.8% additional oil recovery compared to water flooding. After a visual investigation of the impact of CWI on oil recovery and oil distribution in micromodels, core flooding experiments were designed to qualify and compare the effectiveness of water flooding, water alternating CO2 gas (CO2-WAG), and CWI at reservoir conditions considering the solubility of CO2 in seawater and oil. The results of the core flooding experiments were evaluated using a simulation study. The results of core flooding experiments showed that secondary CWI obtained the highest recovery factor of 74.8% compared to 66.5% in CO2-WAG and 64.2% in tertiary CWI processes. The third phase the research was to simulate and predict the experimental results using Computer Modeling Group (CMG version 2014) software. The fluid model was constructed using CMG-WinPropTM to create the compositions and properties of the CO2-oil and CO2-brine mixtures. The fluid model was incorporated into the compositional and unconventional reservoir simulator, CMG-GEMTM, in order to reproduce the CWI and CO2-WAG flooding tests conducted in this study. The simulation results indicated that CWI had a higher oil recovery factor compared to water flooding and CO2-WAG. In summary, this comprehensive study highlights the CWI applicability for vertical oil sweep efficiency and enhanced oil recovery in homogeneous and heterogeneous porous media.

Book Fundamentals of Enhanced Oil Recovery

Download or read book Fundamentals of Enhanced Oil Recovery written by H.K. Van Poollen and Associates and published by . This book was released on 1980 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Enhanced Oil Recovery Field Case Studies

Download or read book Enhanced Oil Recovery Field Case Studies written by Russell T. Johns and published by Elsevier Inc. Chapters. This book was released on 2013-04-10 with total page 39 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most accepted and widely used technologies for enhanced oil recovery is injection of gas or solvent that is miscible or near miscible with reservoir oil. Understanding gas flooding requires a good understanding of the interaction of phase behavior and flow in the reservoir, and how oil and gas develop miscibility.

Book Oil recovery by carbon dioxide injection

Download or read book Oil recovery by carbon dioxide injection written by Pennzoil Company and published by . This book was released on 1977 with total page 32 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fundamentals and Practical Aspects of Gas Injection

Download or read book Fundamentals and Practical Aspects of Gas Injection written by Reza Azin and published by Springer Nature. This book was released on 2021-07-28 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers different aspects of gas injection, from the classic pressure maintenance operation to enhanced oil recovery (EOR), underground gas storage (UGS), and carbon capture and storage (CCS). The authors detail the unique characteristics and specific criteria of each application, including: material balance equations phase behaviour reservoir engineering well design operating aspects surface facilities environmental issues Examples, data, and simulation codes are provided to enable the reader to gain an in-depth understanding of these applications. Fundamentals and Practical Aspects of Gas Injection will be of use to practising engineers in the fields of reservoir engineering, and enhanced oil recovery. It will also be of interest to researchers, academics, and graduate students working in the field of petroleum engineering.

Book CO2 Reservoir Oil Miscibility

Download or read book CO2 Reservoir Oil Miscibility written by Dayanand Saini and published by Springer. This book was released on 2018-06-25 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: This SpringerBrief critically examines the latest experimental and non-experimental approaches used for the fast and reliable characterization and determination of CO2-reservoir oil miscibility in terms of the minimum miscibility pressure (MMP). This book serves as a one-stop source for developing an enhanced understanding of these available methods, and specifically documents, analyses, and evaluates their suitability and robustness for depicting and characterizing the phenomenon of CO2-reservoir oil miscibility in a fast and cost-effective manner. Such information can greatly assist a project team in selecting an appropriate MMP determination method as per the project’s need at a given project’s stage, be that screening, design, or implementation. CO2-Reservoir Oil Miscibility: Experiential and Non-Experimental Characterization and Determination Approaches will be of interest to petroleum science and engineering professionals, researchers, and undergraduate and graduate students engaged in CO2 enhanced oil recovery (EOR) and/or simultaneous CO2-EOR and storage projects and related research. It may also be of interest to engineering and management professionals within the petroleum industry who have responsibility for implementing CO2-EOR projects.

Book Oil Recovery by Carbon Dioxide Injection

Download or read book Oil Recovery by Carbon Dioxide Injection written by and published by . This book was released on 1978 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Carbon Capture  Utilization and Sequestration

Download or read book Carbon Capture Utilization and Sequestration written by Ramesh K. Agarwal and published by BoD – Books on Demand. This book was released on 2018-09-12 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is divided in two sections. Several chapters in the first section provide a state-of-the-art review of various carbon sinks for CO2 sequestration such as soil and oceans. Other chapters discuss the carbon sequestration achieved by storage in kerogen nanopores, CO2 miscible flooding and generation of energy efficient solvents for postcombustion CO2 capture. The chapters in the second section focus on monitoring and tracking of CO2 migration in various types of storage sites, as well as important physical parameters relevant to sequestration. Both researchers and students should find the material useful in their work.

Book Pore Scale Mechanisms of Carbonated Water Injection in Oil Reservoirs

Download or read book Pore Scale Mechanisms of Carbonated Water Injection in Oil Reservoirs written by Masoud Riazi and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Concerns over the environmental impact of carbon dioxide (CO2) have led to a resurgence of interest in CO2 injection (CO2I) in oil reservoirs, which can enhance oil recovery from these reservoirs and store large quantities of CO2 for a long period of time. Oil displacement and recovery by CO2I has been studied and applied in the field extensively. However, CO2I lacks acceptable sweep efficiency, due to the large viscosity contrast between CO2 and resident reservoir fluids. Various CO2I strategies e.g. alternating (WAG) or simultaneous injection of CO2 and water have been suggested to alleviate this problem. An effective alternative strategy is carbonated (CO2-enriched) water injection. In carbonated water, CO2 exists as a dissolved as opposed to a free phase, hence eliminating the problems of gravity segregation and poor sweep efficiency. In this thesis, the results of an integrated experimental and theoretical investigation of the process of carbonated water injection (CWI) as an injection strategy for enhanced oil recovery (EOR) with the added value of CO2 storage are described. High-pressure micromodel technology was used to physically simulate the process of CWI and visually investigate its EOR potential, at typical reservoir conditions. Using the results of these flow visualisation experiments, the underlying physical processes and the pore-scale mechanisms of fluid-fluid and fluid-solid interactions during CWI were demonstrated to be oil swelling, coalescence of the isolated oil ganglia, wettability alteration, oil viscosity reduction and flow diversion due to flow restriction in some of the pores as a result of oil swelling and the resultant fluid redistribution. A mathematical model was developed that accounts for the pore-scale mechanisms observed during the micromodel experiments. In this study, some of the micromodel experimental observations were interpreted and the impact of some of the pertinent parameters on CWI and CO2I processes was studied. The results predicted by the model were linked to the results obtained using a new relationship developed based on the dimensional analysis technique. To examine and investigate the effect of CWI on wettability, micromodel experiments, designed only to observe possible variation of contact angles and spontaneous imbibition displacement mechanisms due to CW, were performed. Contact angle measurements were also conducted to quantify different tendencies of CW and water to wet solid surfaces, using three different solid plates with different salinity of the aqueous phase, under different pressure and temperature conditions. Two other important parameters affecting the performance of CWI, i.e. CO2 solubility in water and its CO2 diffusion coefficient, were also experimentally studied and estimated. A mathematical model was developed to estimate CO2 diffusion coefficient from the corresponding experimental results. The results of this research show that CWI is an effective and efficient injection strategy that offers great potential for enhanced oil recovery and at the same time a unique solution to the problem of reducing CO2 emission.

Book Chemical Enhanced Oil Recovery

Download or read book Chemical Enhanced Oil Recovery written by Patrizio Raffa and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-07-22 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at presenting, describing, and summarizing the latest advances in polymer flooding regarding the chemical synthesis of the EOR agents and the numerical simulation of compositional models in porous media, including a description of the possible applications of nanotechnology acting as a booster of traditional chemical EOR processes. A large part of the world economy depends nowadays on non-renewable energy sources, most of them of fossil origin. Though the search for and the development of newer, greener, and more sustainable sources have been going on for the last decades, humanity is still fossil-fuel dependent. Primary and secondary oil recovery techniques merely produce up to a half of the Original Oil In Place. Enhanced Oil Recovery (EOR) processes are aimed at further increasing this value. Among these, chemical EOR techniques (including polymer flooding) present a great potential in low- and medium-viscosity oilfields. • Describes recent advances in chemical enhanced oil recovery. • Contains detailed description of polymer flooding and nanotechnology as promising boosting tools for EOR. • Includes both experimental and theoretical studies. About the Authors Patrizio Raffa is Assistant Professor at the University of Groningen. He focuses on design and synthesis of new polymeric materials optimized for industrial applications such as EOR, coatings and smart materials. He (co)authored about 40 articles in peer reviewed journals. Pablo Druetta works as lecturer at the University of Groningen (RUG) and as engineering consultant. He received his Ph.D. from RUG in 2018 and has been teaching at a graduate level for 15 years. His research focus lies on computational fluid dynamics (CFD).

Book Enhanced Heavy Oil Recovery by Carbon Dioxide Injection

Download or read book Enhanced Heavy Oil Recovery by Carbon Dioxide Injection written by S. S. Huang and published by . This book was released on 1992 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: