Download or read book Initial Boundary Value Problems in Mathematical Physics written by Rolf Leis and published by Courier Corporation. This book was released on 2013-07-17 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to classical scattering theory and time-dependent theory of linear equations in mathematical physics. Topics include wave operators, exterior boundary value problems, radiation conditions, limiting absorption principles, and more. 1986 edition.
Download or read book The Boundary Value Problems of Mathematical Physics written by O.A. Ladyzhenskaya and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present edition I have included "Supplements and Problems" located at the end of each chapter. This was done with the aim of illustrating the possibilities of the methods contained in the book, as well as with the desire to make good on what I have attempted to do over the course of many years for my students-to awaken their creativity, providing topics for independent work. The source of my own initial research was the famous two-volume book Methods of Mathematical Physics by D. Hilbert and R. Courant, and a series of original articles and surveys on partial differential equations and their applications to problems in theoretical mechanics and physics. The works of K. o. Friedrichs, which were in keeping with my own perception of the subject, had an especially strong influence on me. I was guided by the desire to prove, as simply as possible, that, like systems of n linear algebraic equations in n unknowns, the solvability of basic boundary value (and initial-boundary value) problems for partial differential equations is a consequence of the uniqueness theorems in a "sufficiently large" function space. This desire was successfully realized thanks to the introduction of various classes of general solutions and to an elaboration of the methods of proof for the corresponding uniqueness theorems. This was accomplished on the basis of comparatively simple integral inequalities for arbitrary functions and of a priori estimates of the solutions of the problems without enlisting any special representations of those solutions.
Download or read book Initial Boundary Value Problems in Mathematical Physics written by Rolf Leis and published by . This book was released on 1986 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Boundary Value Problems of Mathematical Physics VI written by Olʹga A. Ladyženskaja and published by American Mathematical Soc.. This book was released on 1972 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mixed Boundary Value Problems written by Dean G. Duffy and published by CRC Press. This book was released on 2008-03-26 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods for Solving Mixed Boundary Value Problems An up-to-date treatment of the subject, Mixed Boundary Value Problems focuses on boundary value problems when the boundary condition changes along a particular boundary. The book often employs numerical methods to solve mixed boundary value problems and the associated integral equat
Download or read book Boundary Value Problems of Mathematical Physics written by O. A. Ladyzhenskaya and published by American Mathematical Soc.. This book was released on 1989 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Green s Functions and Boundary Value Problems written by Ivar Stakgold and published by John Wiley & Sons. This book was released on 2011-03-01 with total page 883 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Second Edition "This book is an excellent introduction to the wide field of boundary value problems."—Journal of Engineering Mathematics "No doubt this textbook will be useful for both students and research workers."—Mathematical Reviews A new edition of the highly-acclaimed guide to boundary value problems, now featuring modern computational methods and approximation theory Green's Functions and Boundary Value Problems, Third Edition continues the tradition of the two prior editions by providing mathematical techniques for the use of differential and integral equations to tackle important problems in applied mathematics, the physical sciences, and engineering. This new edition presents mathematical concepts and quantitative tools that are essential for effective use of modern computational methods that play a key role in the practical solution of boundary value problems. With a careful blend of theory and applications, the authors successfully bridge the gap between real analysis, functional analysis, nonlinear analysis, nonlinear partial differential equations, integral equations, approximation theory, and numerical analysis to provide a comprehensive foundation for understanding and analyzing core mathematical and computational modeling problems. Thoroughly updated and revised to reflect recent developments, the book includes an extensive new chapter on the modern tools of computational mathematics for boundary value problems. The Third Edition features numerous new topics, including: Nonlinear analysis tools for Banach spaces Finite element and related discretizations Best and near-best approximation in Banach spaces Iterative methods for discretized equations Overview of Sobolev and Besov space linear Methods for nonlinear equations Applications to nonlinear elliptic equations In addition, various topics have been substantially expanded, and new material on weak derivatives and Sobolev spaces, the Hahn-Banach theorem, reflexive Banach spaces, the Banach Schauder and Banach-Steinhaus theorems, and the Lax-Milgram theorem has been incorporated into the book. New and revised exercises found throughout allow readers to develop their own problem-solving skills, and the updated bibliographies in each chapter provide an extensive resource for new and emerging research and applications. With its careful balance of mathematics and meaningful applications, Green's Functions and Boundary Value Problems, Third Edition is an excellent book for courses on applied analysis and boundary value problems in partial differential equations at the graduate level. It is also a valuable reference for mathematicians, physicists, engineers, and scientists who use applied mathematics in their everyday work.
Download or read book A Unified Approach to Boundary Value Problems written by Athanassios S. Fokas and published by SIAM. This book was released on 2008-01-01 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a new approach to analysing initial-boundary value problems for integrable partial differential equations.
Download or read book Kernel Functions and Elliptic Differential Equations in Mathematical Physics written by Stefan Bergman and published by Courier Corporation. This book was released on 2005-09-01 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text focuses on the theory of boundary value problems in partial differential equations, which plays a central role in various fields of pure and applied mathematics, theoretical physics, and engineering. Geared toward upper-level undergraduates and graduate students, it discusses a portion of the theory from a unifying point of view and provides a systematic and self-contained introduction to each branch of the applications it employs.
Download or read book Analytical Solution Methods for Boundary Value Problems written by A.S. Yakimov and published by Academic Press. This book was released on 2016-08-13 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytical Solution Methods for Boundary Value Problems is an extensively revised, new English language edition of the original 2011 Russian language work, which provides deep analysis methods and exact solutions for mathematical physicists seeking to model germane linear and nonlinear boundary problems. Current analytical solutions of equations within mathematical physics fail completely to meet boundary conditions of the second and third kind, and are wholly obtained by the defunct theory of series. These solutions are also obtained for linear partial differential equations of the second order. They do not apply to solutions of partial differential equations of the first order and they are incapable of solving nonlinear boundary value problems. Analytical Solution Methods for Boundary Value Problems attempts to resolve this issue, using quasi-linearization methods, operational calculus and spatial variable splitting to identify the exact and approximate analytical solutions of three-dimensional non-linear partial differential equations of the first and second order. The work does so uniquely using all analytical formulas for solving equations of mathematical physics without using the theory of series. Within this work, pertinent solutions of linear and nonlinear boundary problems are stated. On the basis of quasi-linearization, operational calculation and splitting on spatial variables, the exact and approached analytical solutions of the equations are obtained in private derivatives of the first and second order. Conditions of unequivocal resolvability of a nonlinear boundary problem are found and the estimation of speed of convergence of iterative process is given. On an example of trial functions results of comparison of the analytical solution are given which have been obtained on suggested mathematical technology, with the exact solution of boundary problems and with the numerical solutions on well-known methods. - Discusses the theory and analytical methods for many differential equations appropriate for applied and computational mechanics researchers - Addresses pertinent boundary problems in mathematical physics achieved without using the theory of series - Includes results that can be used to address nonlinear equations in heat conductivity for the solution of conjugate heat transfer problems and the equations of telegraph and nonlinear transport equation - Covers select method solutions for applied mathematicians interested in transport equations methods and thermal protection studies - Features extensive revisions from the Russian original, with 115+ new pages of new textual content
Download or read book Initial Boundary Value Problems in Mathematical Physics written by Rolf Leis and published by Springer-Verlag. This book was released on 2013-11-21 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Boundary Value Problems for Transport Equations written by Valeri Agoshkov and published by Springer Science & Business Media. This book was released on 1998-09-29 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the modern theory of boundary value problems the following ap proach to investigation is agreed upon (we call it the functional approach): some functional spaces are chosen; the statements of boundary value prob the basis of these spaces; and the solvability of lems are formulated on the problems, properties of solutions, and their dependence on the original data of the problems are analyzed. These stages are put on the basis of the correct statement of different problems of mathematical physics (or of the definition of ill-posed problems). For example, if the solvability of a prob lem in the functional spaces chosen cannot be established then, probably, the reason is in their unsatisfactory choice. Then the analysis should be repeated employing other functional spaces. Elliptical problems can serve as an example of classical problems which are analyzed by this approach. Their investigations brought a number of new notions and results in the theory of Sobolev spaces W;(D) which, in turn, enabled us to create a sufficiently complete theory of solvability of elliptical equations. Nowadays the mathematical theory of radiative transfer problems and kinetic equations is an extensive area of modern mathematical physics. It has various applications in astrophysics, the theory of nuclear reactors, geophysics, the theory of chemical processes, semiconductor theory, fluid mechanics, etc. [25,29,31,39,40, 47, 52, 78, 83, 94, 98, 120, 124, 125, 135, 146].
Download or read book Numerical Methods for Solving Inverse Problems of Mathematical Physics written by A. A. Samarskii and published by Walter de Gruyter. This book was released on 2008-08-27 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main classes of inverse problems for equations of mathematical physics and their numerical solution methods are considered in this book which is intended for graduate students and experts in applied mathematics, computational mathematics, and mathematical modelling.
Download or read book Unified Transform for Boundary Value Problems written by Athanasios S. Fokas and published by SIAM. This book was released on 2014-12-30 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes state-of-the-art advances and applications of the unified transform and its relation to the boundary element method. The authors present the solution of boundary value problems from several different perspectives, in particular the type of problems modeled by partial differential equations (PDEs). They discuss recent applications of the unified transform to the analysis and numerical modeling of boundary value problems for linear and integrable nonlinear PDEs and the closely related boundary element method, a well-established numerical approach for solving linear elliptic PDEs.? The text is divided into three parts. Part I contains new theoretical results on linear and nonlinear evolutionary and elliptic problems. New explicit solution representations for several classes of boundary value problems are constructed and rigorously analyzed. Part II is a detailed overview of variational formulations for elliptic problems. It places the unified transform approach in a classic context alongside the boundary element method and stresses its novelty. Part III presents recent numerical applications based on the boundary element method and on the unified transform.
Download or read book Singular Integral Equations written by N. I. Muskhelishvili and published by Courier Corporation. This book was released on 2013-02-19 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: DIVHigh-level treatment of one-dimensional singular integral equations covers Holder Condition, Hilbert and Riemann-Hilbert problems, Dirichlet problem, more. 1953 edition. /div
Download or read book Mathematical Methods in Physics written by Victor Henner and published by CRC Press. This book was released on 2009-06-18 with total page 859 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a text on partial differential equations (PDEs) of mathematical physics and boundary value problems, trigonometric Fourier series, and special functions. This is the core content of many courses in the fields of engineering, physics, mathematics, and applied mathematics. The accompanying software provides a laboratory environment that
Download or read book A Collection of Problems on the Equations of Mathematical Physics written by Vasilij S. Vladimirov and published by Springer Science & Business Media. This book was released on 2013-11-09 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: The extensive application of modern mathematical teehniques to theoretical and mathematical physics requires a fresh approach to the course of equations of mathematical physics. This is especially true with regards to such a fundamental concept as the 80lution of a boundary value problem. The concept of a generalized solution considerably broadens the field of problems and enables solving from a unified position the most interesting problems that cannot be solved by applying elassical methods. To this end two new courses have been written at the Department of Higher Mathematics at the Moscow Physics anrl Technology Institute, namely, "Equations of Mathematical Physics" by V. S. Vladimirov and "Partial Differential Equations" by V. P. Mikhailov (both books have been translated into English by Mir Publishers, the first in 1984 and the second in 1978). The present collection of problems is based on these courses and amplifies them considerably. Besides the classical boundary value problems, we have ineluded a large number of boundary value problems that have only generalized solutions. Solution of these requires using the methods and results of various branches of modern analysis. For this reason we have ineluded problems in Lebesgue in tegration, problems involving function spaces (especially spaces of generalized differentiable functions) and generalized functions (with Fourier and Laplace transforms), and integral equations.