EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Influence of Zirconium Alloy Chemical Composition on Microstructure Formation and Irradiation Induced Growth

Download or read book Influence of Zirconium Alloy Chemical Composition on Microstructure Formation and Irradiation Induced Growth written by AV. Tselischev and published by . This book was released on 2002 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: The studies of the dislocation structure, phase, and microchemical compositions of alloy Zr-1Nb-1.2Sn-0.35Fe (E635) and its modifications containing Fe from 0.15 to 0.65% were carried out before and after research reactor irradiation at ~350°C to maximal fluence of ~1027 m-2 (E > 0.1 MeV) and at ~60°C. The size and concentration of the a-type loops depend on the alloy composition and fluence and saturate even at low doses (1 dpa). The evolution of the c-component dislocation structure in recrystallized alloys of E365 type is determined by the chemical and phase compositions of alloys specifically, by the Fe/Nb ratio and the threshold dose, and is consistent with the irradiation growth strain acceleration. In E635 alloy containing 0.15%Fe the accelerated growth is observed after the dose of 15 dpa and is attended with the evolution of the c dislocation structure which is similar to Zr-1Nb (E110) alloy behavior. The irradiation induced growth of E635 type alloy containing 0.65% Fe is similar to that of E635 having the normal composition; no

Book Zirconium in the Nuclear Industry

Download or read book Zirconium in the Nuclear Industry written by Gerry D. Moan and published by ASTM International. This book was released on 2002 with total page 891 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation The 41 papers of this proceedings volume were first presented at the 13th symposium on Zirconium in the Nuclear Industry held in Annecy, France in June of 2001. Many of the papers are devoted to material related issues, corrosion and hydriding behavior, in-reactor studies, and the behavior and properties of Zr alloys used in storing spent fuel. Some papers report on studies of second phase particles, irradiation creep and growth, and material performance during loss of coolant and reactivity initiated accidents. Annotation copyrighted by Book News, Inc., Portland, OR.

Book Microstructure and Properties of Zirconium Alloys in the Absence of Irradiation

Download or read book Microstructure and Properties of Zirconium Alloys in the Absence of Irradiation written by Daniel Charquet and published by . This book was released on 2010 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to optimize zirconium-based alloys, it is usually necessary to understand the relationships and interaction between four different types of parameters: chemical composition, manufacturing process, metallurgical characteristics, and functional properties Examples for various materials show that corrosion resistance depends on the texture and density, distribution, and composition of the precipitate particles. The precipitate composition is determined not only by the alloy chemistry, but also by other factors, such as the cooling rate from the beta phase range. It is also pointed out that some parameters can have opposite effets on nodular and uniform corrosion. Finally, the effects of some impurity elements are described, especially the effect of sulfur on creep and of chlorine on microstructure. The original paper was published by ASTM International in STP 1354, Zirconium in the Nuclear Industry: Twelfth International Symposium, 2000, pp. 314.

Book Peculiarities of Structural and Behavioral Changes of Some Zirconium Alloys at Damage Doses of Up to 50 Dpa

Download or read book Peculiarities of Structural and Behavioral Changes of Some Zirconium Alloys at Damage Doses of Up to 50 Dpa written by VN. Shishov and published by . This book was released on 2004 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: The irradiation-induced damage of zirconium alloys subjected to neutron irradiation up to dose levels of ~50 dpa was investigated. Specimens of unalloyed zirconium, Zr-1%Nb, Zr-2.5%Nb and Zr-1%Nb-1.3%Sn-0.4%Fe were irradiated in the BOR-60 reactor over the temperature range 320-420°C. The dose dependence of the irradiation growth strain increased sharply in zirconium and Zr-Nb irradiated at ~350°C at doses above ~10 dpa. In the case of Zr-1%Nb-1.3%Sn-0.4%Fe, it increased at doses of ~37 dpa. Upon increasing the irradiation temperature to 420°C, a sharp accelerated irradiation growth of the Zr-1%Nb alloy began shifting up to about 30 dpa. For the Zr- 1%Nb-1.3%Sn-0.4%Fe, no change of the irradiation growth rate was observed up to a dose of 55 dpa. The onset of increased irradiation growth in alloys correlates with the occurrence of c-component dislocation loops which coincides with a loss of coherence of finely-dispersed precipitates. Post-irradiation annealing experiments demonstrated that a delay in loop formation leads to displacement of the "break-away" beginning in the dose dependence of the irradiation growth in the direction of high doses. The a+c-type dislocation loops were also formed in Zr-1%Nb alloy at high doses, but their influence on the change of macroscopic properties was not observed.

Book Microstructure and Properties of Zirconium Alloys in the Absence of Irradiation

Download or read book Microstructure and Properties of Zirconium Alloys in the Absence of Irradiation written by D. Charquet and published by . This book was released on 2000 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to optimize zirconium-based alloys, it is usually necessary to understand the relationships and interactions between four different types of parameters: chemical composition, manufacturing process, metallurgical characteristics, and functional properties. Examples for various materials show that corrosion resistance depends on the texture and density, distribution, and composition of the precipitate particles. The precipitate composition is determined not only by the alloy chemistry, but also by other factors, such as the cooling rate from the beta phase range. It is also pointed out that some parameters can have opposite effects on nodular and uniform corrosion. Finally, the effects of some impurity elements are described, especially the effect of sulfur on creep and of chlorine on microstructure.

Book Oxidation and the Testing of Turbine Oils

Download or read book Oxidation and the Testing of Turbine Oils written by Cyril A. Migdal and published by ASTM International. This book was released on 2008 with total page 929 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work presents papers from a December 2005 symposium held in Norfolk, Virginia, and sponsored by ASTM Committee D2 on Petroleum Products and Lubricants and its Subcommittees D02.09 on Oxidation and D02.C0 on Turbine Oils. Contributors include equipment manufacturers, end users, lubricant producers, lubricant additive suppliers, test equipment manufacturers, and standard test method developers. They share information on industry trends, evolving technologies, and changing equipment designs and operating conditions, with a focus on how these factors impact oxidation. Some topics covered include turbine oil performance limits, a new form of the rotating pressure vessel oxidation test, and degradation mechanisms leading to sludge and varnish in modern turbine oil formulations. B&w photos are included. There is no subject index. Migdal is affiliated with Chemtura Corporation.

Book Irradiation Induced Growth and Microstructure of Recrystallized  Cold Worked and Quenched Zircaloy 2  NSF  and E635 Alloys

Download or read book Irradiation Induced Growth and Microstructure of Recrystallized Cold Worked and Quenched Zircaloy 2 NSF and E635 Alloys written by D. W. White and published by . This book was released on 2008 with total page 19 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper is devoted to the study of the effect of the texture, phase composition, and microstructure on the irradiation-induced growth strain (GS) of zirconium-based alloys. GS measurements and TEM microstructural examinations were performed on Zry-2, NSF, and E635 samples in the recrystallized, beta quenched and cold-worked (CW) conditions. The samples were irradiated in the BOR-60 reactor in the temperature range of 315-325°C up to a neutron fluence level of 1.1 x 1026 n/m2 (E>1MeV), i.e., up to a damage dose of 23 dpa. Growth strains of NSF and E635 alloys in all states and in the longitudinal and transverse directions are lower as compared to those of Zry-2, and do not exceed 0.2 % even at the maximum fluence level. As for recrystallized Zry-2, the GS kinetics are characterized by the appearance of the accelerated growth stage. A combination of a certain amount of Nb, Fe, and Sn in the matrix content plays a key role in GS kinetics. The higher the degree of CW, the higher the irradiation growth but its rate of increase with increasing fluence is different for alloys of different compositions. The maximum GS, reaching 0.72 %, is observed in the 20 % CW Zry-2 samples. Texture, along with the alloy composition, is one of the main GS-determining factors. Irradiation growth of the transversal samples is lower as compared to the longitudinal ones because of texture. As for quenched alloys, the texture is practically isotropic and GS values are low, independent of the alloy composition. In CW materials, the density of ‹c›- dislocations greatly affects the irradiation growth strain. Particles of Zr(Fe,Cr)2 and Zr2(Fe,Ni) phases in Zry-2 as well as Zr(Nb,Fe)2 in NSF and E635 are depleted in iron under irradiation. The Fe goes into the matrix and modifies its properties. The HCP lattice structure in the Laves phases in NSF and E635 changes into BCC (?-Nb-type). FCC (Zr,Nb)2Fe precipitates preserve on the whole their composition and structure; no amorphization of the Nb-containing precipitates is observed. The Zr2(Fe,Ni) precipitates with a BCT lattice remain crystalline, and HCP Zr(Cr,Fe)2 precipitates undergo amorphization. The average particle size in the irradiated alloys is larger and the concentration is a little lower as compared to the unirradiated ones. Irradiation-induced fine dispersed precipitates about 3 nm in size, probably enriched in niobium, appear in NSF and E635. The observed changes of microhardness are discussed from the viewpoint of generation of radiation defects (clusters, dislocation loops), evolution of the initial dislocation structure, and matrix composition (enrichment in Fe, Cr, and, probably, Nb).

Book Materials Ageing and Degradation in Light Water Reactors

Download or read book Materials Ageing and Degradation in Light Water Reactors written by K L Murty and published by Elsevier. This book was released on 2013-02-18 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: Light water reactors (LWRs) are the predominant class of nuclear power reactors in operation today; however, ageing and degradation can influence both their performance and lifetime. Knowledge of these factors is therefore critical to safe, continuous operation. Materials ageing and degradation in light water reactors provides a comprehensive guide to prevalent deterioration mechanisms, and the approaches used to handle their effects.Part one introduces fundamental ageing issues and degradation mechanisms. Beginning with an overview of ageing and degradation issues in LWRs, the book goes on to discuss corrosion in pressurized water reactors and creep deformation of materials in LWRs. Part two then considers materials' ageing and degradation in specific LWR components. Applications of zirconium alloys in LWRs are discussed, along with the ageing of electric cables. Materials management strategies for LWRs are then the focus of part three. Materials management strategies for pressurized water reactors and VVER reactors are considered before the book concludes with a discussion of materials-related problems faced by LWR operators and corresponding research needs.With its distinguished editor and international team of expert contributors, Materials ageing and degradation in light water reactors is an authoritative review for anyone requiring an understanding of the performance and durability of this type of nuclear power plant, including plant operators and managers, nuclear metallurgists, governmental and regulatory safety bodies, and researchers, scientists and academics working in this area. - Introduces the fundamental ageing issues and degradation mechanisms associated with this class of nuclear power reactors - Considers materials ageing and degradation in specific light water reactor components, including properties, performance and inspection - Chapters also focus on material management strategies

Book Fundamentals of Radiation Materials Science

Download or read book Fundamentals of Radiation Materials Science written by GARY S. WAS and published by Springer. This book was released on 2016-07-08 with total page 1014 pages. Available in PDF, EPUB and Kindle. Book excerpt: The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.

Book Transmission Electron Microscopy

Download or read book Transmission Electron Microscopy written by David B. Williams and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electron microscopy has revolutionized our understanding the extraordinary intellectual demands required of the mi of materials by completing the processing-structure-prop croscopist in order to do the job properly: crystallography, erties links down to atomistic levels. It now is even possible diffraction, image contrast, inelastic scattering events, and to tailor the microstructure (and meso structure ) of materials spectroscopy. Remember, these used to be fields in them to achieve specific sets of properties; the extraordinary abili selves. Today, one has to understand the fundamentals ties of modem transmission electron microscopy-TEM of all of these areas before one can hope to tackle signifi instruments to provide almost all of the structural, phase, cant problems in materials science. TEM is a technique of and crystallographic data allow us to accomplish this feat. characterizing materials down to the atomic limits. It must Therefore, it is obvious that any curriculum in modem mate be used with care and attention, in many cases involving rials education must include suitable courses in electron mi teams of experts from different venues. The fundamentals croscopy. It is also essential that suitable texts be available are, of course, based in physics, so aspiring materials sci for the preparation of the students and researchers who must entists would be well advised to have prior exposure to, for carry out electron microscopy properly and quantitatively.

Book Effect of Alloying Elements  Cold Work  and Hydrogen on the Irradiation Induced Growth Behavior of Zirconium Alloy Variants

Download or read book Effect of Alloying Elements Cold Work and Hydrogen on the Irradiation Induced Growth Behavior of Zirconium Alloy Variants written by Suresh Yagnik and published by . This book was released on 2018 with total page 48 pages. Available in PDF, EPUB and Kindle. Book excerpt: In-reactor dimensional changes in zirconium-based alloys result from a complex interplay of many factors, such as (1) alloy type and composition, including the addition of elements such as niobium, iron, and tin; (2) fabrication process, including cold work, texture, and residual stresses; (3) irradiation temperature; and (4) hydrogen levels. In many cases, the observed dimensional changes in light water reactor fuel-assembly components--especially at high exposures--cannot be fully explained based on current growth and creep models. Therefore, a systematic approach was taken in this multiyear (2005-2011) Nuclear Fuel Industry Research Program investigation. The objective was to measure stress-free irradiation-induced growth (IIG) of specially fabricated alloys through irradiation under controlled conditions in the BOR-60 fast-flux test reactor up to a high fluence of approximately 2 x 1026 m-2 (E > 1 MeV)--equivalent to maximum of approximately 37 dpa exposure--followed by postirradiation examinations (PIEs). Irradiation temperature was within a narrow temperature range (320 ± 10°C). The PIEs included dimensional-change and microhardness measurements, metallography and hydride etching, and scanning transmission electron microscopy (STEM) or transmission electron microscopy (TEM).

Book Comprehensive Nuclear Materials

Download or read book Comprehensive Nuclear Materials written by and published by Elsevier. This book was released on 2020-07-22 with total page 4871 pages. Available in PDF, EPUB and Kindle. Book excerpt: Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field

Book Effect of Water Chemistry and Composition on Microstructural Evolution of Oxide on Zr Alloys

Download or read book Effect of Water Chemistry and Composition on Microstructural Evolution of Oxide on Zr Alloys written by B. X. Zhou and published by . This book was released on 2008 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: The microstructure of oxide films formed on Zircaloy-4 and Alloy No. 3, which has a composition similar to ZIRLOTM, was investigated by high resolution transmission and scanning electron microscopy, and by scanning probe microscopy after corrosion tests performed at 360°C/18.6 MPa in deionized water or lithiated water with 0.01 M LiOH. The microstructural evolution of the oxide films was analyzed by comparing the microstructure at different depths in the oxide layer. The defects, consisting of vacancies and interstitials, such as points, lines, planes, and volumes, were produced during the oxide growth. Monoclinic, tetragonal, cubic, and amorphous phases were detected and their coherent relationships were identified. The characteristic of oxide with such microstructure had an internal cause, and the temperature and time were the external causes that induced the microstructural evolution during the corrosion process. The diffusion, annihilation, and condensation of vacancies and interstitials under the action of stress, temperature, and time caused stress relaxation and phase transformation. It was observed, in the middle of the oxide layer, that the vacancies absorbed by grain boundaries formed pores to weaken the bonding strength between grains. Pores formed under compressive stress lined up along the direction parallel to the compressive stress. Thus, cracks developed from the pores were parallel to the oxide/metal interface. Li+ and OH- incorporated in oxide films were adsorbed on the wall of pores or entered into vacancies to reduce the surface free energy of the zirconium oxide during exposure in lithiated water. As a result, the diffusion of vacancies and the formation of pores were enhanced, inducing the degradation of the corrosion resistance. The relationship between the corrosion resistance of zirconium alloys and the microstructural evolution of oxide films affected by water chemistry and composition is also discussed.

Book Irradiation Induced Growth and Microstructure Evolution of Zr 1 2Sn 1Nb 0 4Fe Under Neutron Irradiation to High Doses

Download or read book Irradiation Induced Growth and Microstructure Evolution of Zr 1 2Sn 1Nb 0 4Fe Under Neutron Irradiation to High Doses written by GP. Kobylyansky and published by . This book was released on 1999 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zirconium alloy components subjected to long-term operation and high doses in thermal reactors need to be highly irradiation resistant to provide integrity of components, primarily, their geometrical sizes. Transmission and scanning electron microscopy, energy dispersive X-ray microanalysis used to investigate thin foils and extraction replicas of irradiated zirconium, Zr-1Nb (E110) and Zr-1.2Sn-1Nb-0.4Fe (E635) alloys allowed us to analyze the evolution of their microstructure under neutron irradiation. The experimental irradiations that were conducted at 350°C to 1027 n/m2 (E >= 0.1 MeV) show that the most irradiation resistant alloy proved to be a multicomponent E635 alloy. It is not essentially subject to growth. Dislocation structure and phase composition were studied as interrelated to different stages of irradiation induced growth. The accelerated growth correlates with a high density of basal -- plane c-component dislocations.

Book Zirconium in the Nuclear Industry

Download or read book Zirconium in the Nuclear Industry written by Craig M. Eucken and published by ASTM International. This book was released on 1991 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings of the Ninth International Symposium on [title], held in Kobe, Japan, November 1990, address current trends in the development, performance, and fabrication of zirconium alloys for nuclear power reactors. the bulk of the most recent work on zirconium alloy behavior has concerned corr

Book Understanding Irradiation Growth Through Atomistic Simulations

Download or read book Understanding Irradiation Growth Through Atomistic Simulations written by Mikael Christensen and published by . This book was released on 2018 with total page 31 pages. Available in PDF, EPUB and Kindle. Book excerpt: Irradiation-induced structural changes of ?-zirconium alloys and in particular the effect of iron were investigated by molecular dynamics simulations using embedded atom potentials derived from first-principles calculations. The simulations revealed that at temperatures between 500 and 600 K self-interstitial atoms (SIAs) diffuse rapidly in a cooperative movement, preferably parallel to basal planes (a directions; a), forming nanoclusters with an extension in a and c. Vacancies diffuse more slowly than SIAs and remain isolated for a longer period of time. Nanoclusters associated with SIAs cause a pronounced overall expansion in a directions, as well as local strains. Under compressive strain in the c direction, vacancy diffusivity increases in the c direction. In contrast, the diffusivity of SIAs increases in the c direction under a tensile strain in the c direction. SIA nanoclusters are highly mobile within basal planes. Vacancy clusters grow by merging, leading to a contraction in the a direction, compensating for the expansion caused by SIA nanoclusters and possibly contributing to the plateau in growth after the initial rapid expansion. At the onset of breakaway growth, possibly due to stress buildup, the vacancy nanoclusters can condense into c loops, thereby diminishing the compensation effect. The alloying elements iron, nickel, chromium, and niobium liberated from secondary phase particles under irradiation or already in solution are attracted to vacancies and SIAs and are found inside vacancy and SIA loops. The interaction of alloying elements with defect clusters is discussed, with a particular focus on iron. Iron has been found to promote cluster formation in zirconium, and the structures of zirconium-iron clusters have been analyzed. Tin is repelled by SIA clusters and only weakly attracted by vacancies. Niobium impedes the diffusion of SIAs (and therefore may increase annihilation rates with nearby vacancies) and does not destabilize vacancy or SIA clusters. Ab initio calculations of the dimensional and elastic coefficients of the intermetallic phases occurring in secondary phase particles, such as Zr2Fe and Zr3Fe, are presented, allowing an assessment of local strains in a zirconium matrix. Thus, novel results from extended molecular dynamics simulations provide new insights and contribute to a deeper understanding of the complex mechanisms causing irradiation-induced dimensional changes and the breakaway growth of zirconium alloys.

Book Investigating the Effect of Zirconium Oxide Microstructure on Corrosion Performance

Download or read book Investigating the Effect of Zirconium Oxide Microstructure on Corrosion Performance written by Alistair Garner and published by . This book was released on 2018 with total page 33 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scanning precession electron diffraction in the transmission electron microscope has been used to simultaneously map the phase, orientation, and grain morphology of oxides formed on Zircaloy-2 after three and six cycles in a boiling water reactor in unprecedented detail. For comparison, a region of a preoxidized autoclave-formed oxide was also proton-irradiated at the Dalton Cumbrian Facility. The proton irradiation was observed to cause additional stabilization of the tetragonal phase that was attributed to the stabilizing effect of irradiation-induced defects in the oxide. In the reactor-formed oxides, no extra stabilization of the tetragonal grains was observed under neutron irradiation, as indicated by the similar tetragonal phase fraction and transformation twin-boundary distributions between the nonirradiated and reactor-formed oxides. It is suggested that the damage rate is too low in the newly formed oxide to cause significant stabilization of the tetragonal phase. This technique also reveals that the oxide formed under reactor conditions has a more heterogeneous microstructure, and the growth of well-oriented columnar monoclinic grains is significantly reduced compared with a nonirradiated oxide. High-angle annular dark-field scanning transmission electron microscopy also revealed the development of extensive networks of intergranular porosity and eventually grain decohesion in the reactor-formed oxides. These results suggest that the tetragonal-monoclinic transformation is not responsible for the accelerated corrosion exhibited under reactor conditions. It is proposed that the usual out-of-reactor oxide growth and nucleation processes are significantly modified under reactor conditions, resulting in a more heterogeneous and randomly oriented oxide microstructure with reduced columnar grain growth. It is suggested that this disordered oxide microstructure allows for the formation of extensive intergranular porosity that could lead to accelerated in-reactor corrosion.