EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Infinitely Divisible Point Processes

Download or read book Infinitely Divisible Point Processes written by Johannes Kerstan and published by John Wiley & Sons. This book was released on 1978 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Introduction to the Theory of Point Processes

Download or read book An Introduction to the Theory of Point Processes written by Daryl J. Daley and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic point processes are sets of randomly located points in time, on the plane or in some general space. This book provides a general introduction to the theory, starting with simple examples and an historical overview, and proceeding to the general theory. It thoroughly covers recent work in a broad historical perspective in an attempt to provide a wider audience with insights into recent theoretical developments. It contains numerous examples and exercises. This book aims to bridge the gap between informal treatments concerned with applications and highly abstract theoretical treatments.

Book Topics in Infinitely Divisible Distributions and L  vy Processes  Revised Edition

Download or read book Topics in Infinitely Divisible Distributions and L vy Processes Revised Edition written by Alfonso Rocha-Arteaga and published by Springer Nature. This book was released on 2019-11-02 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with topics in the area of Lévy processes and infinitely divisible distributions such as Ornstein-Uhlenbeck type processes, selfsimilar additive processes and multivariate subordination. These topics are developed around a decreasing chain of classes of distributions Lm, m = 0,1,...,∞, from the class L0 of selfdecomposable distributions to the class L∞ generated by stable distributions through convolution and convergence. The book is divided into five chapters. Chapter 1 studies basic properties of Lm classes needed for the subsequent chapters. Chapter 2 introduces Ornstein-Uhlenbeck type processes generated by a Lévy process through stochastic integrals based on Lévy processes. Necessary and sufficient conditions are given for a generating Lévy process so that the OU type process has a limit distribution of Lm class. Chapter 3 establishes the correspondence between selfsimilar additive processes and selfdecomposable distributions and makes a close inspection of the Lamperti transformation, which transforms selfsimilar additive processes and stationary type OU processes to each other. Chapter 4 studies multivariate subordination of a cone-parameter Lévy process by a cone-valued Lévy process. Finally, Chapter 5 studies strictly stable and Lm properties inherited by the subordinated process in multivariate subordination. In this revised edition, new material is included on advances in these topics. It is rewritten as self-contained as possible. Theorems, lemmas, propositions, examples and remarks were reorganized; some were deleted and others were newly added. The historical notes at the end of each chapter were enlarged. This book is addressed to graduate students and researchers in probability and mathematical statistics who are interested in learning more on Lévy processes and infinitely divisible distributions.

Book L  vy Processes and Infinitely Divisible Distributions

Download or read book L vy Processes and Infinitely Divisible Distributions written by Sato Ken-Iti and published by Cambridge University Press. This book was released on 1999 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Introduction to the Theory of Point Processes

Download or read book An Introduction to the Theory of Point Processes written by D.J. Daley and published by Springer Science & Business Media. This book was released on 2006-04-10 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.

Book Point Processes and Their Statistical Inference

Download or read book Point Processes and Their Statistical Inference written by Alan Karr and published by Routledge. This book was released on 2017-09-06 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maintaining the excellent features that made the first edition so popular, this outstanding reference/text presents the only comprehensive treatment of the theory of point processes and statistical inference for point processes-highlighting both pointprocesses on the real line and sp;,.tial point processes. Thoroughly updated and revised to reflect changes since publication of the firstedition, the expanded Second EdiLion now contains a better organized and easierto-understand treatment of stationary point processes ... expanded treatment ofthe multiplicative intensity model ... expanded treatment of survival analysis . ..broadened consideration of applications ... an expanded and extended bibliographywith over 1,000 references ... and more than 3('() end-of-chapter exercises.

Book Stochastic Integrals

    Book Details:
  • Author : Henry P. McKean
  • Publisher : American Mathematical Society
  • Release : 2024-05-23
  • ISBN : 1470477874
  • Pages : 159 pages

Download or read book Stochastic Integrals written by Henry P. McKean and published by American Mathematical Society. This book was released on 2024-05-23 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This little book is a brilliant introduction to an important boundary field between the theory of probability and differential equations. —E. B. Dynkin, Mathematical Reviews This well-written book has been used for many years to learn about stochastic integrals. The book starts with the presentation of Brownian motion, then deals with stochastic integrals and differentials, including the famous Itô lemma. The rest of the book is devoted to various topics of stochastic integral equations, including those on smooth manifolds. Originally published in 1969, this classic book is ideal for supplementary reading or independent study. It is suitable for graduate students and researchers interested in probability, stochastic processes, and their applications.

Book Stochastic Analysis for Poisson Point Processes

Download or read book Stochastic Analysis for Poisson Point Processes written by Giovanni Peccati and published by Springer. This book was released on 2016-07-07 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic geometry is the branch of mathematics that studies geometric structures associated with random configurations, such as random graphs, tilings and mosaics. Due to its close ties with stereology and spatial statistics, the results in this area are relevant for a large number of important applications, e.g. to the mathematical modeling and statistical analysis of telecommunication networks, geostatistics and image analysis. In recent years – due mainly to the impetus of the authors and their collaborators – a powerful connection has been established between stochastic geometry and the Malliavin calculus of variations, which is a collection of probabilistic techniques based on the properties of infinite-dimensional differential operators. This has led in particular to the discovery of a large number of new quantitative limit theorems for high-dimensional geometric objects. This unique book presents an organic collection of authoritative surveys written by the principal actors in this rapidly evolving field, offering a rigorous yet lively presentation of its many facets.

Book Stochastic Geometry for Wireless Networks

Download or read book Stochastic Geometry for Wireless Networks written by Martin Haenggi and published by Cambridge University Press. This book was released on 2013 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analyse wireless network performance and improve design choices for future architectures and protocols with this rigorous introduction to stochastic geometry.

Book A Course on Point Processes

Download or read book A Course on Point Processes written by R.-D. Reiss and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level textbook provides a straight-forward and mathematically rigorous introduction to the standard theory of point processes. The author's aim is to present an account which concentrates on the essentials and which places an emphasis on conveying an intuitive understanding of the subject. As a result, it provides a clear presentation of how statistical ideas can be viewed from this perspective and particular topics covered include the theory of extreme values and sampling from finite populations. Prerequisites are that the reader has a basic grounding in the mathematical theory of probability and statistics, but otherwise the book is self-contained. It arises from courses given by the author over a number of years and includes numerous exercises ranging from simple computations to more challenging explorations of ideas from the text.

Book Point Processes

    Book Details:
  • Author : D.R. Cox
  • Publisher : Routledge
  • Release : 2018-12-19
  • ISBN : 1351423851
  • Pages : 206 pages

Download or read book Point Processes written by D.R. Cox and published by Routledge. This book was released on 2018-12-19 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been much recent research on the theory of point processes, i.e., on random systems consisting of point events occurring in space or time. Applications range from emissions from a radioactive source, occurrences of accidents or machine breakdowns, or of electrical impluses along nerve fibres, to repetitive point events in an individual's medical or social history. Sometimes the point events occur in space rather than time and the application here raneg from statistical physics to geography. The object of this book is to develop the applied mathemathics of point processes at a level which will make the ideas accessible both to the research worker and the postgraduate student in probability and statistics and also to the mathemathically inclined individual in another field interested in using ideas and results. A thorough knowledge of the key notions of elementary probability theory is required to understand the book, but specialised "pure mathematical" coniderations have been avoided.

Book Infinite Divisibility of Probability Distributions on the Real Line

Download or read book Infinite Divisibility of Probability Distributions on the Real Line written by Fred W. Steutel and published by CRC Press. This book was released on 2003-10-03 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Infinite Divisibility of Probability Distributions on the Real Line reassesses classical theory and presents new developments, while focusing on divisibility with respect to convolution or addition of independent random variables. This definitive, example-rich text supplies approximately 100 examples to correspond with all major chapter topics and reviews infinite divisibility in light of the central limit problem. It contrasts infinite divisibility with finite divisibility, discusses the preservation of infinite divisibility under mixing for many classes of distributions, and investigates self-decomposability and stability on the nonnegative reals, nonnegative integers, and the reals.

Book Random Measures  Theory and Applications

Download or read book Random Measures Theory and Applications written by Olav Kallenberg and published by Springer. This book was released on 2017-04-12 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering the first comprehensive treatment of the theory of random measures, this book has a very broad scope, ranging from basic properties of Poisson and related processes to the modern theories of convergence, stationarity, Palm measures, conditioning, and compensation. The three large final chapters focus on applications within the areas of stochastic geometry, excursion theory, and branching processes. Although this theory plays a fundamental role in most areas of modern probability, much of it, including the most basic material, has previously been available only in scores of journal articles. The book is primarily directed towards researchers and advanced graduate students in stochastic processes and related areas.

Book Upper and Lower Bounds for Stochastic Processes

Download or read book Upper and Lower Bounds for Stochastic Processes written by Michel Talagrand and published by Springer Nature. This book was released on 2022-01-01 with total page 727 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an in-depth account of modern methods used to bound the supremum of stochastic processes. Starting from first principles, it takes the reader to the frontier of current research. This second edition has been completely rewritten, offering substantial improvements to the exposition and simplified proofs, as well as new results. The book starts with a thorough account of the generic chaining, a remarkably simple and powerful method to bound a stochastic process that should belong to every probabilist’s toolkit. The effectiveness of the scheme is demonstrated by the characterization of sample boundedness of Gaussian processes. Much of the book is devoted to exploring the wealth of ideas and results generated by thirty years of efforts to extend this result to more general classes of processes, culminating in the recent solution of several key conjectures. A large part of this unique book is devoted to the author’s influential work. While many of the results presented are rather advanced, others bear on the very foundations of probability theory. In addition to providing an invaluable reference for researchers, the book should therefore also be of interest to a wide range of readers.

Book Theory of Random Sets

Download or read book Theory of Random Sets written by Ilya Molchanov and published by Springer. This book was released on 2017-12-14 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph, now in a thoroughly revised second edition, offers the latest research on random sets. It has been extended to include substantial developments achieved since 2005, some of them motivated by applications of random sets to econometrics and finance. The present volume builds on the foundations laid by Matheron and others, including the vast advances in stochastic geometry, probability theory, set-valued analysis, and statistical inference. It shows the various interdisciplinary relationships of random set theory within other parts of mathematics, and at the same time fixes terminology and notation that often vary in the literature, establishing it as a natural part of modern probability theory and providing a platform for future development. It is completely self-contained, systematic and exhaustive, with the full proofs that are necessary to gain insight. Aimed at research level, Theory of Random Sets will be an invaluable reference for probabilists; mathematicians working in convex and integral geometry, set-valued analysis, capacity and potential theory; mathematical statisticians in spatial statistics and uncertainty quantification; specialists in mathematical economics, econometrics, decision theory, and mathematical finance; and electronic and electrical engineers interested in image analysis.

Book Symposium on Probability Methods in Analysis

Download or read book Symposium on Probability Methods in Analysis written by Jean-Michel Morel and published by Springer. This book was released on 2006-11-15 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Aspects of Risk Theory

    Book Details:
  • Author : Jan Grandell
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461390583
  • Pages : 186 pages

Download or read book Aspects of Risk Theory written by Jan Grandell and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Risk theory, which deals with stochastic models of an insurance business, is a classical application of probability theory. The fundamental problem in risk theory is to investigate the ruin possibility of the risk business. Traditionally the occurrence of the claims is described by a Poisson process and the cost of the claims by a sequence of random variables. This book is a treatise of risk theory with emphasis on models where the occurrence of the claims is described by more general point processes than the Poisson process, such as renewal processes, Cox processes and general stationary point processes. In the Cox case the possibility of risk fluctuation is explicitly taken into account. The presentation is based on modern probabilistic methods rather than on analytic methods. The theory is accompanied with discussions on practical evaluation of ruin probabilities and statistical estimation. Many numerical illustrations of the results are given.