EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Advances in Economics and Econometrics

Download or read book Advances in Economics and Econometrics written by Econometric Society. World Congress and published by Cambridge University Press. This book was released on 2013-05-27 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third volume of edited papers from the Tenth World Congress of the Econometric Society 2010.

Book Handbook of Quantile Regression

Download or read book Handbook of Quantile Regression written by Roger Koenker and published by CRC Press. This book was released on 2017-10-12 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantile regression constitutes an ensemble of statistical techniques intended to estimate and draw inferences about conditional quantile functions. Median regression, as introduced in the 18th century by Boscovich and Laplace, is a special case. In contrast to conventional mean regression that minimizes sums of squared residuals, median regression minimizes sums of absolute residuals; quantile regression simply replaces symmetric absolute loss by asymmetric linear loss. Since its introduction in the 1970's by Koenker and Bassett, quantile regression has been gradually extended to a wide variety of data analytic settings including time series, survival analysis, and longitudinal data. By focusing attention on local slices of the conditional distribution of response variables it is capable of providing a more complete, more nuanced view of heterogeneous covariate effects. Applications of quantile regression can now be found throughout the sciences, including astrophysics, chemistry, ecology, economics, finance, genomics, medicine, and meteorology. Software for quantile regression is now widely available in all the major statistical computing environments. The objective of this volume is to provide a comprehensive review of recent developments of quantile regression methodology illustrating its applicability in a wide range of scientific settings. The intended audience of the volume is researchers and graduate students across a diverse set of disciplines.

Book Behavioral Predictive Modeling in Economics

Download or read book Behavioral Predictive Modeling in Economics written by Songsak Sriboonchitta and published by Springer Nature. This book was released on 2020-08-05 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents both methodological papers on and examples of applying behavioral predictive models to specific economic problems, with a focus on how to take into account people's behavior when making economic predictions. This is an important issue, since traditional economic models assumed that people make wise economic decisions based on a detailed rational analysis of all the relevant aspects. However, in reality – as Nobel Prize-winning research has shown – people have a limited ability to process information and, as a result, their decisions are not always optimal. Discussing the need for prediction-oriented statistical techniques, since many statistical methods currently used in economics focus more on model fitting and do not always lead to good predictions, the book is a valuable resource for researchers and students interested in the latest results and challenges and for practitioners wanting to learn how to use state-of-the-art techniques.

Book Data Science for Financial Econometrics

Download or read book Data Science for Financial Econometrics written by Nguyen Ngoc Thach and published by Springer Nature. This book was released on 2020-11-13 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an overview of state-of-the-art econometric techniques, with a special emphasis on financial econometrics. There is a major need for such techniques, since the traditional way of designing mathematical models – based on researchers’ insights – can no longer keep pace with the ever-increasing data flow. To catch up, many application areas have begun relying on data science, i.e., on techniques for extracting models from data, such as data mining, machine learning, and innovative statistics. In terms of capitalizing on data science, many application areas are way ahead of economics. To close this gap, the book provides examples of how data science techniques can be used in economics. Corresponding techniques range from almost traditional statistics to promising novel ideas such as quantum econometrics. Given its scope, the book will appeal to students and researchers interested in state-of-the-art developments, and to practitioners interested in using data science techniques.

Book Econometrics with Machine Learning

Download or read book Econometrics with Machine Learning written by Felix Chan and published by Springer Nature. This book was released on 2022-09-07 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book helps and promotes the use of machine learning tools and techniques in econometrics and explains how machine learning can enhance and expand the econometrics toolbox in theory and in practice. Throughout the volume, the authors raise and answer six questions: 1) What are the similarities between existing econometric and machine learning techniques? 2) To what extent can machine learning techniques assist econometric investigation? Specifically, how robust or stable is the prediction from machine learning algorithms given the ever-changing nature of human behavior? 3) Can machine learning techniques assist in testing statistical hypotheses and identifying causal relationships in ‘big data? 4) How can existing econometric techniques be extended by incorporating machine learning concepts? 5) How can new econometric tools and approaches be elaborated on based on machine learning techniques? 6) Is it possible to develop machine learning techniques further and make them even more readily applicable in econometrics? As the data structures in economic and financial data become more complex and models become more sophisticated, the book takes a multidisciplinary approach in developing both disciplines of machine learning and econometrics in conjunction, rather than in isolation. This volume is a must-read for scholars, researchers, students, policy-makers, and practitioners, who are using econometrics in theory or in practice.

Book Advances in Economics and Econometrics  Volume 3  Econometrics

Download or read book Advances in Economics and Econometrics Volume 3 Econometrics written by Daron Acemoglu and published by Cambridge University Press. This book was released on 2013-05-13 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the third of three volumes containing edited versions of papers and commentaries presented at invited symposium sessions of the Tenth World Congress of the Econometric Society, held in Shanghai in August 2010. The papers summarize and interpret key developments in economics and econometrics, and they discuss future directions for a wide variety of topics, covering both theory and application. Written by the leading specialists in their fields, these volumes provide a unique, accessible survey of progress on the discipline. The first volume primarily addresses economic theory, with specific focuses on nonstandard markets, contracts, decision theory, communication and organizations, epistemics and calibration, and patents.

Book Advances in Economics and Econometrics  Volume 2

Download or read book Advances in Economics and Econometrics Volume 2 written by Bo Honoré and published by Cambridge University Press. This book was released on 2017-11-02 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second of two volumes containing papers and commentaries presented at the Eleventh World Congress of the Econometric Society, held in Montreal, Canada in August 2015. These papers provide state-of-the-art guides to the most important recent research in economics. The book includes surveys and interpretations of key developments in economics and econometrics, and discussion of future directions for a wide variety of topics, covering both theory and application. These volumes provide a unique, accessible survey of progress on the discipline, written by leading specialists in their fields. The second volume addresses topics such as big data, macroeconomics, financial markets, and partially identified models.

Book Handbook of Agricultural Economics

Download or read book Handbook of Agricultural Economics written by and published by Elsevier. This book was released on 2021-12-08 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Agricultural Economics, Volume Five highlights new advances in the field, with this new release exploring comprehensive chapters written by an international board of authors who discuss topics such as The Economics of Agricultural Innovation, Climate, food and agriculture, Agricultural Labor Markets: Immigration Policy, Minimum Wages, Etc., Risk Management in Agricultural Production, Animal Health and Livestock Disease, Behavioral and Experimental Economics to Inform Agri-Environmental Programs and Policies, Big Data, Machine Learning Methods for Agricultural and Applied Economists, Agricultural data collection to minimize measurement error and maximize coverage, Gender, agriculture and nutrition, Social Networks Analysis In Agricultural Economics, and more. - Presents the latest release in the Handbook of Agricultural Economics - Written and contributed by leaders in the field - Covers topics such as The Economics of Agricultural Innovation, Climate, Food and Agriculture, Agricultural Labor Markets, and more

Book Applied Nonparametric Econometrics

Download or read book Applied Nonparametric Econometrics written by Daniel J. Henderson and published by Cambridge University Press. This book was released on 2015-01-19 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: The majority of empirical research in economics ignores the potential benefits of nonparametric methods, while the majority of advances in nonparametric theory ignores the problems faced in applied econometrics. This book helps bridge this gap between applied economists and theoretical nonparametric econometricians. It discusses in depth, and in terms that someone with only one year of graduate econometrics can understand, basic to advanced nonparametric methods. The analysis starts with density estimation and motivates the procedures through methods that should be familiar to the reader. It then moves on to kernel regression, estimation with discrete data, and advanced methods such as estimation with panel data and instrumental variables models. The book pays close attention to the issues that arise with programming, computing speed, and application. In each chapter, the methods discussed are applied to actual data, paying attention to presentation of results and potential pitfalls.

Book Handbook of Economic Forecasting

Download or read book Handbook of Economic Forecasting written by Graham Elliott and published by Elsevier. This book was released on 2013-10-24 with total page 1386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The highly prized ability to make financial plans with some certainty about the future comes from the core fields of economics. In recent years the availability of more data, analytical tools of greater precision, and ex post studies of business decisions have increased demand for information about economic forecasting. Volumes 2A and 2B, which follows Nobel laureate Clive Granger's Volume 1 (2006), concentrate on two major subjects. Volume 2A covers innovations in methodologies, specifically macroforecasting and forecasting financial variables. Volume 2B investigates commercial applications, with sections on forecasters' objectives and methodologies. Experts provide surveys of a large range of literature scattered across applied and theoretical statistics journals as well as econometrics and empirical economics journals. The Handbook of Economic Forecasting Volumes 2A and 2B provide a unique compilation of chapters giving a coherent overview of forecasting theory and applications in one place and with up-to-date accounts of all major conceptual issues. - Focuses on innovation in economic forecasting via industry applications - Presents coherent summaries of subjects in economic forecasting that stretch from methodologies to applications - Makes details about economic forecasting accessible to scholars in fields outside economics

Book The Oxford Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistics

Download or read book The Oxford Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistics written by Jeffrey Racine and published by Oxford University Press. This book was released on 2014-04 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, edited by Jeffrey Racine, Liangjun Su, and Aman Ullah, contains the latest research on nonparametric and semiparametric econometrics and statistics. Chapters by leading international econometricians and statisticians highlight the interface between econometrics and statistical methods for nonparametric and semiparametric procedures.

Book Principles and Methods for Data Science

Download or read book Principles and Methods for Data Science written by and published by Elsevier. This book was released on 2020-05-28 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principles and Methods for Data Science, Volume 43 in the Handbook of Statistics series, highlights new advances in the field, with this updated volume presenting interesting and timely topics, including Competing risks, aims and methods, Data analysis and mining of microbial community dynamics, Support Vector Machines, a robust prediction method with applications in bioinformatics, Bayesian Model Selection for Data with High Dimension, High dimensional statistical inference: theoretical development to data analytics, Big data challenges in genomics, Analysis of microarray gene expression data using information theory and stochastic algorithm, Hybrid Models, Markov Chain Monte Carlo Methods: Theory and Practice, and more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Statistics series - Updated release includes the latest information on Principles and Methods for Data Science

Book Econometrics

    Book Details:
  • Author : Bruce Hansen
  • Publisher : Princeton University Press
  • Release : 2022-08-16
  • ISBN : 0691235899
  • Pages : 1080 pages

Download or read book Econometrics written by Bruce Hansen and published by Princeton University Press. This book was released on 2022-08-16 with total page 1080 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most authoritative and up-to-date core econometrics textbook available Econometrics is the quantitative language of economic theory, analysis, and empirical work, and it has become a cornerstone of graduate economics programs. Econometrics provides graduate and PhD students with an essential introduction to this foundational subject in economics and serves as an invaluable reference for researchers and practitioners. This comprehensive textbook teaches fundamental concepts, emphasizes modern, real-world applications, and gives students an intuitive understanding of econometrics. Covers the full breadth of econometric theory and methods with mathematical rigor while emphasizing intuitive explanations that are accessible to students of all backgroundsDraws on integrated, research-level datasets, provided on an accompanying websiteDiscusses linear econometrics, time series, panel data, nonparametric methods, nonlinear econometric models, and modern machine learningFeatures hundreds of exercises that enable students to learn by doingIncludes in-depth appendices on matrix algebra and useful inequalities and a wealth of real-world examplesCan serve as a core textbook for a first-year PhD course in econometrics and as a follow-up to Bruce E. Hansen’s Probability and Statistics for Economists

Book Advances in Economics and Econometrics

Download or read book Advances in Economics and Econometrics written by Econometric Society. World Congress and published by Cambridge University Press. This book was released on 2013-05-27 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first volume of edited papers from the Tenth World Congress of the Econometric Society 2010.

Book Bayesian Inference in the Social Sciences

Download or read book Bayesian Inference in the Social Sciences written by Ivan Jeliazkov and published by John Wiley & Sons. This book was released on 2014-11-04 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents new models, methods, and techniques and considers important real-world applications in political science, sociology, economics, marketing, and finance Emphasizing interdisciplinary coverage, Bayesian Inference in the Social Sciences builds upon the recent growth in Bayesian methodology and examines an array of topics in model formulation, estimation, and applications. The book presents recent and trending developments in a diverse, yet closely integrated, set of research topics within the social sciences and facilitates the transmission of new ideas and methodology across disciplines while maintaining manageability, coherence, and a clear focus. Bayesian Inference in the Social Sciences features innovative methodology and novel applications in addition to new theoretical developments and modeling approaches, including the formulation and analysis of models with partial observability, sample selection, and incomplete data. Additional areas of inquiry include a Bayesian derivation of empirical likelihood and method of moment estimators, and the analysis of treatment effect models with endogeneity. The book emphasizes practical implementation, reviews and extends estimation algorithms, and examines innovative applications in a multitude of fields. Time series techniques and algorithms are discussed for stochastic volatility, dynamic factor, and time-varying parameter models. Additional features include: Real-world applications and case studies that highlight asset pricing under fat-tailed distributions, price indifference modeling and market segmentation, analysis of dynamic networks, ethnic minorities and civil war, school choice effects, and business cycles and macroeconomic performance State-of-the-art computational tools and Markov chain Monte Carlo algorithms with related materials available via the book’s supplemental website Interdisciplinary coverage from well-known international scholars and practitioners Bayesian Inference in the Social Sciences is an ideal reference for researchers in economics, political science, sociology, and business as well as an excellent resource for academic, government, and regulation agencies. The book is also useful for graduate-level courses in applied econometrics, statistics, mathematical modeling and simulation, numerical methods, computational analysis, and the social sciences.

Book Statistics for High Dimensional Data

Download or read book Statistics for High Dimensional Data written by Peter Bühlmann and published by Springer Science & Business Media. This book was released on 2011-06-08 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.

Book Statistical Foundations of Data Science

Download or read book Statistical Foundations of Data Science written by Jianqing Fan and published by CRC Press. This book was released on 2020-09-21 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.